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How do a regulator’s decisions depend on the characteristics and strategies of its external clients? We develop a theory

of approval regulation in which an uninformed regulator may veto the submission of a better-informed firm. The firm

can perform publicly observable experiments to generate product information prior to submission. We find that when

experimentation is short, Type I errors (approving bad products) are more likely for products submitted by firms with

lower experimentation costs (larger firms), while Type II errors (rejecting good products) should be concentrated among

smaller firms. These comparative statics are reversed when experimentation is long. We perform a statistical analysis on

FDA approvals of new pharmaceutical products using two different measures of Type I error. We find consistent support for

the counterintuitive hypothesis that, under particular conditions, errors are decreasing in the size of the firm submitting the

product.

Bureaucratic and regulatory organizations commit

numerous errors—some trivial, some catas-

trophic. The standard metaphor used to under-

stand these mistakes is that of “Type I” and “Type II”

errors, borrowed from statistical decision theory. An agent

commits a Type I error (or an “error of commission”)

when she rejects an agreed-upon null (default) hypothe-

sis that is true. She commits a Type II error (or an “error

of omission”) when she affirms a null hypothesis that is

false.

So understood, bureaucratic and regulatory errors in-

volve crucial questions of politics, policy, and institutions.

Welfare agencies may fail to issue a check to a deserving

beneficiary (Type II) or pay someone who is not quali-

fied (Type I). Space agencies may launch rockets that are

doomed to destruction (I) or ground launches that would

have gone off smoothly (II). Family service agencies may

dissolve reasonably healthy families (I) or fail to remove

children from abusive homes (II). Safety regulators may

approve products that should never have been marketed

(I) or reject or delay products that are socially beneficial
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(II). A grant-making agency may reject a good project (II)

while funding a mediocre one (I).

A substantial body of scholarly work has examined

bureaucratic decision making and error. Much of its focus

has been on how features of a case or of agency procedure

lead to error or on the balance between Type I and Type

II errors. Yet the problems that occupy bureaucrats and

regulators only rarely come to them exogenously. Instead,

the bureau’s agenda may consist of cases that are actively

pursued by private entities or other public actors through

a process of submission (explicit or implicit). Citizens

may bring complaints or charges to a prosecutor or an

enforcement agency. Firms may submit license or new

product applications. Researchers may submit patents or

new research ideas embedded within grant applications.

This “bureaucratic agenda” factor—the extent to

which bureaucratic choices (and hence errors) are shaped

by external actors, whose submissions are themselves

shaped by anticipation of what the regulator will do with

them—has not been studied formally. The submission

process is a crucial determinant of bureaucratic error
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because it shapes the “pool” of cases considered by an

agency. This pool can reduce the probability of error or

can heighten it. Where, for instance, the submission pool

is composed of cases that have a high Type I error probabil-

ity, more errors of commission may result even without

changes to administrative structure. When the bureau-

cratic agenda is composed of, for example, firm submis-

sions that the regulator can approve or deny, the agenda

will depend heavily on the firm’s expectations of the regu-

lator’s strategy. Hence just as the pool of firm submissions

shapes the regulator’s behavior, there is a feedback be-

tween the regulator’s behavior and the submissions. This

may in turn affect the research and development strategy

of the firm.

Our aim in this article is to consider—theoretically

with a formal model and empirically with data on U.S.

Food and Drug Administration (FDA) drug approval

decisions—the implications of endogenous submissions

for the study of bureaucratic error. The theoretical model

is a game of incomplete information between a firm and

a regulator. Both players are interested in the initially un-

known quality of a product under development by the

firm. Uncertainty over quality is mutual, with the firm

initially better informed than the regulator. While both

players wish to release high-quality products onto the

marketplace, the regulator has a higher standard. This

divergence in preferences may reflect the extent of reg-

ulatory caution. A marginally effective drug might be

worthwhile to a pharmaceutical company because of its

expected profitability, but not to the FDA. A regulator

with a standard lower than the firm’s need not impose

any hurdles in the approval process.

The game begins with a product development phase,

in each period of which a firm may submit a costly appli-

cation, perform an experiment to gather more informa-

tion, or abandon the product. Each experiment is costly

and takes the form of a publicly observable Bernoulli trial.

If the firm submits, the regulator must accept or reject the

proposal. The firm thus conditions its submission strategy

on its private information and the endogenously acquired

experimental information. Experiments therefore serve

two purposes. As in standard “burned money” games,

they are costly signals of private information. But they

also provide public information that is used to determine

whether a product is approved, or even submitted. Both

players need experimentation to determine the product’s

viability, and the regulator has an incentive to discourage

the development of ex ante “bad” products.

In equilibrium, firms with the most favorable pri-

vate information and initial experimental results tend

to submit earliest. Those with less favorable results ei-

ther withdraw or continue experimenting in the hopes of

improving their record. The equilibrium logic of the game

is in some cases therefore the reverse of that of standard

costly signaling games: “high” types incur low costs (i.e.,

burn less money), while lower types must perform more

costly experiments in order to put themselves in the po-

sition to submit. Interestingly, the quality of approved

products is often exactly the regulator’s reservation value.

This happens because the regulator can only rarely sepa-

rate between those types that meet its requirements and

those that do not. She can deter the “worst” products from

being submitted, but cannot screen out products that are

just below standard.

Theoretically, our model shows that the firm’s costs

for experimentation and submission affect the credibil-

ity of the products submitted to the regulator and hence

the likelihood of the product’s acceptance. When the cost

of submission is higher, so is the credibility of the sub-

mission, as the regulator judges the firm’s willingness to

submit to be indicative of high quality. A high acceptance

probability in turn generates a high probability of Type I

error. But the relationship between the cost of experimen-

tation and credibility is more complicated and depends

on the experimental history of the product. To see this,

consider the following logic. As costs rise, the regulator

may reject more products when R & D is short because

she knows that a firm with low-quality products will be

tempted not to experiment. The high rejection rate low-

ers the probability of Type I error. The regulator may then

infer when R & D is long that only high-quality products

could remain in the population and accept all submis-

sions. Alternatively, if experimental costs are low then she

may infer negative information simply from the absence

of a previous submission.

The model therefore predicts that errors will depend

on the amount of experimentation conducted as well as

firm characteristics, but not in a simple manner. A key re-

sult for Type I errors is a reversal of comparative statics on

firm size (among the set of larger firms), depending on the

length of R & D. When experimentation is short, the reg-

ulator will accept disproportionately more bad products

from firms with low experimentation costs—these are

likely to be the largest and oldest firms. However, when

experimentation is long, acceptance of bad products is

more likely for submitters whose experimentation costs

are high (smaller, newer firms). Type I errors will rise with

the cost of submission.

Since Type II errors are generated by rejections rather

than acceptances, the comparative statics for Type II errors

are exactly the reverse of those for Type I errors. Addi-

tionally, the model also predicts Type II errors that are

generated through delay, as the inability of a firm to

submit an acceptable product early can temporarily hurt
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consumers. Such errors of delay will be more likely when

the regulator has pessimistic prior beliefs about the quality

of the proposal.

We assess these empirical predictions of the model

in an analysis of FDA decision making. FDA approval

of new drug products represents a highly revealing and

consequential case in which to study the commission of

regulatory error. In many cases, the mistakes of the agency

can be cleanly observed. The process by which ideas and

products are submitted is also cleanly observed. Finally,

the process is repeated with sufficient frequency and di-

versity to allow aggregation of rich data on regulatory

decision making and the incidence of several types of ob-

servable error. We examine FDA approval decisions for

new molecular entities (NMEs) developed and submitted

over the past 25 years. Using several different measures of

Type I error, we assess the empirical correlation between

regulatory error and the variables of interest predicted by

our model. A crucial feature of our empirical analyses is

the use of progressive sample restrictions through which

we attempt to recreate the conditions for comparative

statics obtained in our model. While necessarily obser-

vational, our results provide consistent support for our

hypotheses on Type I errors.

Before elaborating our model, we devote our first sec-

tion to explaining the importance of regulatory error and

the limitations of previous attempts to study it. The sec-

ond section presents the basic approval regulation model.

The third section derives equilibria of the game and ex-

amines a number of testable predictions for regulatory

policy, and the following sections present data for and es-

timations of some of these predictions. We then discuss

the results and conclude.

Regulatory Error in Theory
and Practice

Regulatory error merits theoretical analysis for at least

two reasons. First, the errors can have drastic economic

and policy consequences. Perhaps the most prominent

example of a Type I error in pharmaceutical regula-

tion became public in September 2004, when Merck an-

nounced the voluntary worldwide withdrawal of Vioxx

(rofecoxib), a COX-2 inhibitor for the treatment of os-

teoarthritis and other indications. The stated reason for

the withdrawal was that a Phase III trial of rofecoxib

for patients with colon polyps had evinced a doubling

of the rate of adverse cardiovascular events (stroke and

heart attack) relative to the control group. The FDA soon

published a controversial memorandum from one of its

epidemiologists, Dr. David Graham of the Office of Drug

Safety, suggesting that use of rofecoxib as opposed to other

COX-2 inhibitors was responsible for 27,000 to 55,000

deaths from 1999 to 2003.1 As an example of a Type II

error, critics of the FDA have long pointed to the delayed

availability of so-called beta-blockers as a telling example

of the costs of U.S. pharmaceutical regulation (Hilts 2003;

Wardell and Lasagna 1975). By blocking beta-adrenergic

receptors to which adrenaline binds in heart cells, beta-

blockers can reduce effective cardiovascular “workload.”

The late introduction of alprenolol as a treatment for es-

sential hypertension and angina was estimated by Wardell

to have resulted in over 10,000 deaths per year in the

United States.2

Second, there are typically players outside of the firm-

regulator “game” who are also affected by the trade-offs

between Type I and Type II errors (e.g., Quirk 1980). Their

payoffs are central to understanding the interest group

politics surrounding regulatory policy. In the context of

drug approvals, for example, disease advocacy groups may

favor quicker approvals and care directly about Type II

errors, while consumer safety groups may favor slower

approvals and care directly about Type I errors.

Previous studies of administrative and regulatory er-

ror have generally fallen under three categories. An ex-

tensive literature on optimal stopping problems considers

the trade-off faced by a single decision maker between ac-

cepting an experimental product immediately and wait-

ing for additional (and costly) information (e.g., Dixit

and Pindyck 1994; Kamien and Schwartz 1972; Moscarini

and Smith 2001; Reinganum 1982). In the regulatory ap-

proval context, Carpenter (2004) considers a single deci-

sion maker facing an exogenous stream of experimental

results. In this environment, the model predicts no asymp-

totic Type II errors: good products may be delayed, but in

the long run will always be accepted eventually.

1Memorandum from David J. Graham, MD, MPH, Associate Di-
rector for Science, Office of Drug Safety to Paul Seligman, MD,
MPH, Acting Director, Office of Drug Safety entitled, “Risk of
Acute Myocardial Infarction and Sudden Cardiac Death in Pa-
tients Treated with COX-2 Selective and Non-Selective NSAIDs,”
September 30, 2004; at http://www.fda.gov/cder/drug/infopage/
vioxx/vioxxgraham.pdf (accessed May 3, 2007).

2While plausible, Wardell and Lasagna’s claims were made without
a rigorous statistical methodology, and we are aware of no repli-
cation to date which has confirmed or disconfirmed them. Hilts’
account, which estimates fewer deaths and places less blame on the
FDA, is also quite threadbare in its particulars. Statement of William
Wardell, M.D., Ph.D., at Hearings on the Food and Drug Admin-
istration’s New Drug Approval Process, Submitted to the Science,
Research and Technology Subcommittee of the Committee on Sci-
ence and Technology, United States House of Representatives, June
19, 1979.
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A second line of argument has focused upon admin-

istrative structure and the benefits and limits of redun-

dancy (Bendor 1985; Heimann 1997; Landau 1969; Ting

2003). These efforts focused on the effects of parallel pro-

cessing (multiple procedurally independent agents) and

serial processing (multiple predecision steps). The for-

mer structure reduces Type II errors, but increases Type

I errors, while the latter does the reverse. Overall, how-

ever, redundant and seemingly inefficient administrative

arrangements could be useful ex ante in minimizing orga-

nizational error, particularly for agencies governing risky

technologies.

A final set of theories that can be usefully applied to

organizational error invokes bounded rationality. Because

decision making imposes computational costs, boundedly

rational bureaucrats may satisfice rather than optimize

(Simon 1968). They may employ shortcuts in learning,

fail to collect all relevant information, or rely heavily

upon frames in rendering decisions. These behaviors may

collectively give rise to organization-wide maladies (e.g.,

Allison 1971; Bendor and Kumar 2005). Unfortunately,

few formal models have used these approaches both to

study agency failure as well as to distinguish between

outcomes under fully and boundedly rational decision

making.

These literatures mark the limits of our analysis.

While they suggest natural extensions to our work, our

model will produce systematic variations in errors even

without their features. Instead, we focus on a common

shortcoming of all of these explanations. To our knowl-

edge, all formal analyses of Type I and Type II error have

taken the agenda of the policymaker as exogenous. Thus

the set of products (drugs, foods, energy technologies)

or ideas (military or law enforcement doctrines) consid-

ered by the policymaker is unaffected by the anticipation

of administrative decisions. Yet some of the most impor-

tant influences on errors may come from the manner in

which the policymaker induces “applicants” to advance

or abandon their proposals. A fuller account of agency

errors, then, demands an analysis of how bureaucratic

agendas are shaped. The ensuing model comprises a first

formalized attempt to do this.

The Model

Game Structure

Informational Environment and Players. There are two

players: a firm (F) and a regulator (R). Both players are

imperfectly informed about a parameter x of a product,

which may be thought of as its “quality” or profitability

if brought to market. We assume that x follows a Beta

distribution, or x ∼ �(�, n), where � and n are integers

with 1 < � < n. The first parameter of the distribution, �,

is F’s type, that is, the estimated product quality prior to

any research. Since F has only one product, we use “firm”

and “product” interchangeably. The type takes one of two

possible values, � ∈ {�
¯
, �̄} where �

¯
= �̄ − 1 and the prob-

ability that � = �̄ is p ∈ (0, 1). We will refer to �
¯

and �̄

as the “low” and “high” types, respectively, where the for-

mer corresponds to a lower expected quality. The type is

known only to F, though R knows p. The second param-

eter, n, is common knowledge.

A crucial feature of our model, then, is that no player

is certain of the true product quality. Moreover, informa-

tion is asymmetric because the firm’s initial estimate of

x is more precise than the regulator’s. In this respect, the

Beta distribution of quality is attractive because it offers

a natural interpretation of a set of n Bernoulli trials, of

which � resulted in success and n − � in failure.3 Ad-

ditionally, it is flexible enough to accommodate a wide

variety of “shapes” of the density function, as determined

by � and n. Given � and n, the Beta distribution implies

that x has a prior mean �/n and prior variance �(n − �)/

(n2(n + 1)). The uncertainty over x can be reduced par-

tially through observable experiments.

Sequence of Play: Development, Then Regulation. The

game has up to four periods (t = 1, 2, 3, 4), denoted by

subscripts. It begins in a development phase with up to

three periods and possibly ends with a regulatory phase

of one period.

In the development phase, F chooses an action f t ∈
{S, W, E } at t = 1, 2. S denotes a submission for approval,

which ends the development phase and commences the

regulatory phase the next period. W denotes a withdrawal

from consideration, ending the game. Finally, E denotes

an experiment to gather more data. An experiment is a sin-

gle Bernoulli trial, which produces a publicly observable

result et ∈ {0, 1} corresponding to failure or success, re-

spectively. For convenience we let e0 = 0. Each experiment

continues the development phase. F cannot experiment

past the second period and thus must either submit or

withdraw: f 3 ∈ {S, W}.

At the beginning of the regulatory phase, R knows F’s

actions and experimental results and uses these to form

expectations about � and in turn x. Based on this, she

makes a review decision r ∈ {A, R}, where A and R de-

note acceptance and rejection of the firm’s submission,

respectively.

Information and Belief Updating. A key component of

the model is the way in which experimental results affect

the players’ expectations of product quality. (Without ex-

periments, the model reduces to a simple signaling game

3The reputation games of Calvert (1987) and Alt, Calvert, and
Humes (1988) use a similar technology.
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with F as the sender.) The Beta distribution provides sim-

ple ways to calculate both the probability of an experimen-

tal success as well as the updated estimate of x. Beginning

with a prior distribution of �(�, n), the probability that

the next experiment succeeds (i.e., e1 = 1) is simply �/n.

An experimental record of n′ experiments producing �′

successes generates a posterior distribution of � (� + �′,
n + n′), with mean � + �′

n + n′ and variance (� + �′)(n + n′ − � − �′)
(n + n′)2(n + n′ + 1)

.

Since the parameters affecting the estimate of x

change with experimentation, it will be useful to distin-

guish notationally between F’s “initial” type � and the

numerical value of the first parameter of the Beta distri-

bution by letting m = �̄.

Utilities. F receives x if the product is approved, and

zero for rejection or withdrawal. Each experiment costs

c e , and a submission costs c s, where:

ce ∈
(

0,
m(m − 1)

(n + 1)(n + 2)(n + m − 1)

]
(1)

cs ∈
(

0,
m

n + 2

]
. (2)

These assumptions ensure that the low type is not pre-

vented from experimentation or submission by exoge-

nous costs alone (though it may choose not to do so in

equilibrium). They also substantially simplify the analysis

by eliminating some trivial equilibria.

R receives x − k for an approved product, and zero

otherwise. The parameter k is therefore the divergence

between the preferences of R and F. It can represent a

“certainty equivalent” that a risk-averse citizen or legis-

lature, fearing a product safety disaster, would demand

from the firm in order for its product to be marketed. To

rule out a number of trivial cases, let k satisfy:

k ∈
(

m

n
,

m + 1

n + 2

)
. (3)

The lower bound guarantees that some experimentation

is necessary to generate a product satisfactory to the reg-

ulator. The upper bound forces R to take experimental

histories seriously. The high type becomes acceptable to

R after one experimental success, while the low type needs

two successes. Thus rejecting “early” (period 2) submis-

sions is not a dominant strategy, and R may sometimes

wish to accept a low-type product.

Equilibrium

We characterize mixed strategy Perfect Bayesian Equilib-

ria (PBE) that satisfy a minor refinement. Let Ht represent

the set of all possible experimental histories (or experi-

mental results) prior to time t ; thus, H1 ≡ ∅, H2 ≡ {0,

1}, and H3 ≡ {0, 1}× {0, 1}. We use ht to denote generic

elements of Ht . The equilibrium consists of the following

three elements.

1. F’s strategy is the triple (�1, �2, �3), where �t : {�
¯
, �̄} ×

Ht → �({S, W, E }) for t = 1, 2, and �3 : {�
¯
, �̄} ×

H3 → �({S, W}) map types and experimental histo-

ries to probability distributions over submitting, with-

drawing, and experimenting (where feasible).

2. R’s strategy � maps experimental histories, conditional

upon a submission, into a probability of rejection.

(Formally, � : ∪t Ht → [0, 1]).

3. R has beliefs � mapping the experimental and sub-

mission history into a probability that � = �̄. For-

mally, � : ∪t Ht × {∅, S} → [0, 1]. These beliefs must

be consistent with Bayes’ Rule along the equilibrium

path of play. Out of equilibrium, �(ht , ·) = p.4

Our analysis will utilize two other pieces of nota-

tion. First, we decompose �t(�, ht ) into probabilities of

submitting, �(�, ht ), withdrawing, �(�, ht ), and experi-

menting, 	(�, ht ). Second, we denote the expected quality

of a period t submission (given beliefs �(·)) by:

x̄(ht) = E [x | ht, ft = S]

= �(ht, S) + m − 1 + ∑t−1
i=0 ei

n + t − 1
. (4)

This expression restates the posterior mean of a Bernoulli

process with Beta-distributed priors. The numerator gives

the number of “successes” and the denominator gives the

number of “trials,” and both incorporate R’s prior infor-

mation about x and the experimental history.

To simplify our presentation, we ignore “knife-edge”

equilibria, which are not robust to small perturbations in

parameter values. While we do not prove the result due

to space considerations, the remaining equilibria are the

only ones in which the counterintuitive strategy of with-

drawing good products in the last period is not used.5 As

the subsequent development shows, the predicted equi-

libria are unique for most, but not all, parameter values.

This nonuniqueness does not affect the tested hypotheses

of the model. Therefore, rather than imposing another

refinement, we remain neutral on which equilibrium ob-

tains in these cases.

4R therefore believes that each type is equally likely to submit
out of equilibrium and so (3) implies that x̄(ht ) < k for any
ht 
∈ {1, (1, 1)}. These beliefs are relatively innocuous. Any suffi-
ciently “pessimistic” beliefs would essentially support the equilib-
ria identified here. If beliefs were more “optimistic,” then R would
accept all submissions for a larger set of histories. This would in-
duce all types to submit at those histories. It is easily shown that no
equilibrium can be sustained in this manner.

5The proofs of Propositions 1 and 2 rule out a number of candidate
equilibria.
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Main Results: Experimentation
and Regulatory Agendas

We now turn to the main model. There are two types of

equilibria—the Early Submission Equilibrium (ESE) and

the Late Submission Equilibrium (LSE)—depending on

how players react to a successful period 1 experiment.

General Features

We begin by deriving strategies that are shared by both the

ESE and LSE. Throughout the game, each player’s strategy

can be stated in the following general terms. R’s decision

problem occurs when F submits. Clearly, R accepts a sub-

mission if its expected quality is greater than k, rejects if

it is less, and is indifferent (and so may mix) otherwise.

Thus:

�∗(ht) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x̄(ht) > k

∈ [0, 1] if x̄(ht) = k

1 if x̄(ht) < k.

(5)

F’s choice will depend on his assessment of the value

of experimentation. Let v(�, ht ) denote type-�’s continu-

ation value from experimentation, conditional upon ex-

perimental history ht . Clearly, v(�, h3) = 0 ∀�. He prefers

submission over experimentation in period t if:

(
1 − �∗(ht)

) [
� + ∑t−1

i=0 ei

n + t − 1

]
− cs > v(�, ht). (6)

Finally, F prefers submission or experimentation over

withdrawal in period t if the expected payoff from either

is nonnegative.

The derivation of equilibrium strategies is simpli-

fied by a number of cases in which R does not need to

distinguish between F’s types. First, there are histories

for which both types are either acceptable or unaccept-

able to R. By (3), R would reject any submission with

no successes in the experimental history, and therefore

neither type of F submits under any such history. If no

successes have been achieved by t = 3, then the inabil-

ity to experiment further forces a withdrawal. Likewise,

R would approve any submission with two successes, and

thus both types of F submit for h2 = (1, 1). Thus we

have:

�∗(ht) =
{

1 if ht ∈ {∅, 0, (0, 0)}
0 if h3 = (1, 1)

(7)

�∗(�, ht) =
{

0 if ht ∈ {∅, 0, (0, 0)}
1 if h3 = (1, 1)

(8)

�∗(�, (0, 0)) = 1. (9)

Since these expressions hold in any equilibrium, they are

omitted from the following discussion.

Second, when p is sufficiently high, there are histories

for which the “average” quality of a submission when both

firm types experiment and submit exceeds k, causing R

to accept all submissions. This may occur for h2 = 1 and

h3 = (0, 1) or (1,0). It will therefore be useful to define

the expected period 2 quality conditional upon h2 = 1,

given that both types experiment in period 1:

x̃1 = m

n + 1

(
1 + p

m − 1 + p

)
(10)

Likewise, we define the expected period 3 quality given

that h3 = (0, 1) or (1,0) and both types experiment and

submit:

x̃2 = m

n + 2

(
1 + p(n − m)

(n − m + 1)(m − 1) + p(n − 2m + 1)

)

(11)

The parameters x̃1 and x̃2 are important to R because

they determine whether her acceptance strategy needs to

distinguish between types. For example, if x̃1 ≥ k and

both types experiment and submit upon a success, then

R accepts a submission after a single experimental success

with probability one.

Two Equilibria

Early Submission Equilibrium. An ESE is an equilibrium

in which F submits “early” (i.e., in period 2) with positive

probability. Clearly, an early submission requires that F’s

first experiment be successful. There are two possibilities

induced by the history h2 = 1. These depend on F’s quality

threshold, k, relative to x̃1, the expected period 2 quality

conditional upon both types experimenting successfully

in period 1.

If k ≤ x̃1, then the prior quality distribution is high.

R is thus willing in expectation to accept the set of all

successful first-period experimenters, which includes low

types. Since additional experiments are costly and cannot

improve the odds of acceptance, both types submit and

are accepted with certainty.

If k > x̃1, then R would not accept the set of all first-

period successes. However, by (3), she wishes to accept

the high type and can choose a rejection strategy to de-

ter the low type from always submitting. Early submis-

sion requires that an initially successful high type prefer
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submission to continued experimentation. This occurs

under the following condition, which we label Early Sub-

mission (ES):

cs − ce >
m(m + 1)

(n + 1)(n + 2)
. (12)

This condition is counterintuitive because it suggests that

F submits early when c e is low, even though F would ap-

pear to have an incentive to wait for a possibly better

product. In equilibrium, this logic works only for the low

type, which R wishes to discourage from submitting early.

Deterring these submissions is more easily achieved if c e

is low, and hence the probability of early acceptance is de-

creasing in c e . Thus for c e sufficiently low, the high type

prefers submission to the risk of a bad second experimen-

tal result.

If instead F’s first experiment ends in failure, then

by (8) she cannot submit. The low type may then either

continue experimenting or withdraw. The incentive to

continue experimentation is maximized when x̃2 ≥ k; i.e.,

the ex ante expected quality is high enough that a history

of (0, 1) is sufficient for R to accept, given that both types

experiment.

A withdrawal will occur when c s and c e are high

enough to outweigh any possible gain from approval.

This occurs under the following condition, which we label

Early Withdrawal (EW):

m − 1

n + 1

(
m

n + 2
− cs

)
− ce ≤ 0. (13)

When EW holds, the information asymmetry between

players disappears because R infers that only a high type

could remain after a failure. Note that by (1) and (2), EW

implies ES.

The first result uses these observations to character-

ize the ESE strategies. Its derivation may be found in

the appendix. Figure 1 graphically depicts F’s equilibrium

strategy.

Proposition 1. (Early Submission Equilibrium) If k ≤ x̃1

or ES holds, then there exists an equilibrium given by (7)–(9)

and:

For F (type �̄) : 	∗(�̄, ∅) = 	∗(�̄, 0) = 1, �∗(�̄, 1) = 1,

�∗(�̄, (0, 1)) = 1.

For F (type �
¯
) : 	∗(�

¯
, 0)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if EW holds

1 if EW does not

hold and k ≤ x̃2

p(n − m)m(m + 1 − k(n + 2))
(1 − p)(n − m + 1)(m − 1)(k(n + 2) − m)

otherwise,

FIGURE 1 Firm Strategy in Early Submission
Equilibrium.
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Submit

Withdraw

Submit
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e1 = 1

e1 = 0

e2 = 1

e2 = 0

e2 = 1

e2 = 0

Type

Notes: With a type �̄ product, F submits after one suc-

cess. With a type �
¯

product, F may be forced to withdraw

after one failure.

�∗(�
¯
, 0) = 1 − 	∗(�

¯
, 0), 	∗(�

¯
, ∅) = 1, �∗(�

¯
, 1)

=
{

1 if k ≤ x̃1

pm(m + 1 − k(n + 1))
(1 − p)(m − 1)(k(n + 1) − m)

if k > x̃,

	∗(�
¯
, 1) = 1 − �∗(�

¯
, 1), �∗(�

¯
, (1, 0)) = 1,

�∗(�
¯
, (0, 1)) = 1.

For R: �∗(1)

=
{

0 if k ≤ x̃1

n − m + 1
n + 2

+ n + 1
m

ce − n + 1 − m
m

cs if k > x̃1,

�∗(1, 0) = 1, �∗(0, 1)

=
{

0 if EW holds or k ≤ x̃2

1 − n + 2
m

(
n + 1
m − 1

ce + cs

)
otherwise.

�

Late Submission Equilibrium. An LSE is an equilib-

rium in which there are no submissions at t = 2. This

may occur either because the expected quality of success-

ful experimenters at t = 2 does not warrant acceptance

(i.e., k > x̃1), or because an initially successful experi-

menter would prefer to gather more information (i.e., ES

is violated). The existence of the LSE is assured when the

ESE does not exist and furthermore does not depend on
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the values of c s or c e . The LSE requires only that k > x̃1,

while the ESE requires that either k ≤ x̃1 or ES hold. Thus

when k ≤ x̃1, the model uniquely predicts the ESE. And

when k > x̃1 and ES does not hold, the model uniquely

predicts the LSE. If k > x̃1 and ES holds, then both equi-

libria exist.

Analogously to Proposition 1, the next result charac-

terizes the LSE strategies. Much of the proof is identical

to that of Proposition 1, as the two equilibria are identical

for histories starting with h2 = 0. The derivation can be

found in the supplementary appendix.6

Proposition 2. (Late Submission Equilibrium) If k >

x̃1, then there exists an equilibrium given by (7)–(9) and:

For F (type �̄) : 	∗(�̄, ∅) = 	∗(�̄, 0) = 	∗(�̄, 1) = 1,

�∗(�̄, (0, 1)) = �∗(�̄, (1, 0)) = 1.

For F (type �
¯
) : 	∗(�

¯
, 0)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if EW holds

1 if EW does not

hold and k ≤ x̃2

p(n − m)m(m + 1 − k(n + 2))
(1 − p)(n − m + 1)(m − 1)(k(n + 2) − m)

otherwise,

�∗(�
¯
, 0) = 1 − 	∗(�

¯
, 0), 	∗(�

¯
, ∅) = 	∗(�

¯
, 1) = 1,

�∗(�
¯
, (0, 1)) = 1, �∗(�

¯
, (1, 0))

= p(n − m)m(m + 1 − k(n + 2))

(1 − p)(n − m + 1)(m − 1)(k(n + 2) − m)
.

For R: �∗(1) = 1, �∗(1, 0) =
{

0

1 − n + 2
m

cs , �∗(0, 1)

=
{

0 if EW holds or k ≤ x̃2

1 − n + 2
m

(
n + 1
m − 1

ce + cs

)
otherwise.

�
These two equilibria share several noteworthy fea-

tures. First, costly activity by F can serve multiple pur-

poses, thus distinguishing our model from standard costly

signaling models. Here experimentation and submission

are both signals of type, but experimentation also endoge-

nously generates additional public information. This in-

formation, in addition to type, determines submission

strategies.

Second, at histories h2 = 1 and h3 = (0, 1), R may

face the problem of distinguishing between types. The ex-

pected quality of submitted and accepted products is often

R’s reservation value of k. This makes R indifferent be-

tween rejection and acceptance. R therefore chooses rejec-

tion probabilities that screen out the low type by making

6The supplementary appendix may be accessed at http://people
.hmdc.harvard.edu/∼dcarpent/regerror appendix.pdf.

him indifferent between experimentation or submission

and withdrawal. R thereby benefits from its gatekeeping

power, as k > m
n

by assumption. However, the expected

quality may exceed k if the proportion p of high types

is large or low types withdraw early from consideration.

Thus the approval regulation process allows R to “skim”

the best products from a population that is ex ante unac-

ceptable. A corollary is that, because of asymmetric infor-

mation, R makes both Type I and Type II errors. Errors

occur because submissions are pooled and R mixes be-

tween acceptance and rejection. This result contrasts with

a decision-theoretic world in which R knows � and can

experiment on her own. In this world, no errors would

ensue.

Predictions: Type I and Type II Errors

We now examine the model’s predictions about the like-

lihood of ex ante regulatory errors.7 Recall that R com-

mits a Type I error by approving a product with expected

quality below k. Let 
 (ht ) denote the equilibrium prob-

ability of a Type I error at each history ht in which F sub-

mits with positive probability. For all such histories except

(1, 1), 
 (ht ) is the same as the probability of accepting

a low type, and so 
 (ht ) = (1 − �∗(ht ))(1 − �(ht , S)).

This expression makes clear the fact that Type I errors are

correlated with acceptance rates.

We are primarily interested in comparative statics on

c e and c s. There are three histories (1, (1, 0), and (0, 1))

for which 
 (ht ) varies with these parameters. Calculating

�(ht , S) is facilitated by the fact that x̄(ht) = k when-

ever the rejection probability is interior, as it is for these

histories. (When the rejection probability is not interior,

�(ht , S) must be calculated directly from F’s equilibrium

strategies.) Thus we may use (4) to obtain:

�(ht, S) = k(n + t − 1) − m + 1 −
t∑

i=1

ei−1. (14)

Substituting �∗(ht ) from Propositions 1 and 2, we

can then easily calculate the error probabilities that vary

with costs at each history conditional upon submission:


(1) =
(

m + 1

n + 2
− n + 1

m
ce + n + 1 − m

m
cs

)
× (1 + m − k(n + 1)) if k > x̃1 and ES holds.

7We restrict attention to errors from the standpoint of the reg-
ulator’s preferences and do not consider the optimality of those
preferences (e.g., Peltzman 1973, 1976). The focus on ex ante er-
rors implicitly assumes that the regulator fares worse reputationally
if it approves a product that it would not have wanted to had � been
known. Obviously, ex ante and ex post (i.e., occurring after the
realization of x) errors are correlated.
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(1, 0) = n + 2

m
cs (1 + m − k(n + 2)) if k > x̃2.


(0, 1) = n + 2

m

(
n + 1

m − 1
ce + cs

)
(1 + m − k(n + 2))

if k > x̃2 and EW does not hold.

Note that all histories except h3 = (0, 1) are uniquely

associated with an equilibrium type, while (0, 1) may oc-

cur under either equilibrium and yields the same error

probability.

Type I errors are increasing in c s because of its role as

a one-time signal of quality (implying higher acceptance

rates). Likewise, c e has a similar effect late in the develop-

ment phase. In these cases, F’s choice to bear costs conveys

product quality and thus increases acceptance probabili-

ties. This in turn raises the probability of Type I errors.

In some histories, however, the dynamics of experi-

mentation can confound this logic. For example, if h3 =
(0, 1) and EW holds, then only the high type submits and

all submissions are accepted. The error rate is then zero

and obviously does not depend on costs. Even more in-

terestingly, for early submissions the effect of c e on 
 (ht )

can be the opposite of that for late submissions. Since c e

reduces the incentive of low types to continue experimen-

tation, high values reduce R’s acceptance probability, thus

reducing the likelihood of an unwanted acceptance.

Because the specific history of clinical trials can be

difficult to obtain, the tested comparative statics predic-

tions are based on the length of the presubmission experi-

mental history. Let 
̄ � (·) denote the probability of a Type

I error conditional upon submission after � periods of

experimentation. Aggregating over possible values of p,

it is straightforward to obtain the following comparative

statics:

� Short experimentation (� = 1):{
∂
̄1

∂ce
< 0,

∂
̄1

∂cs
> 0 if ES holds

∂
̄1

∂ce
= 0,

∂
̄1

∂cs
= 0 otherwise.

� Long experimentation (� = 2):8{
∂
̄2

∂ce
= 0,

∂
̄2

∂cs
> 0 if EW holds

∂
̄2

∂ce
> 0,

∂
̄2

∂cs
> 0 otherwise.

Note finally that for all histories, Type I errors are

decreasing in k and weakly increasing in c s, and so at the

margin raising the quality standard and reducing submis-

sion hurdles will decrease Type I errors. While it is not a

8The prediction that ∂
̄2

∂cs
> 0 requires only that players do not

always play the ESE when both equilibrium types exist. If they
do play the ESE, then the history (1, 0) cannot occur if ES holds.
Since EW implies ES, 
 (1, 0) does not enter the calculation of 
̄2

when EW holds, and thus ∂
̄2

∂cs
= 0.

direct prediction of the model, our analysis suggests that

consumer protection groups such as Public Citizen, who

place more weight on Type I errors, would support in-

creasing regulatory standards and reducing submission

costs.

While our empirical results do not focus on them,

a similar analysis can be performed on Type II errors.

R commits a Type II error by rejecting a product with

expected quality above k. Given ht and a submission, the

equilibrium probability of a Type II error is simply �∗(ht )

�(ht , S), which for h3 
= (1, 1) is the probability of reject-

ing the high type. Again, there are four histories—1, (1, 0),

(0, 1), and (1, 1)—for which submissions occur with posi-

tive probability. Clearly, no Type II errors occur whenever

all submissions are accepted. For the other histories, the

error probabilities conditional upon submission are easily

calculated using (14) and Propositions 1 and 2.

Carrying out the exercise analogous to that for Type I

errors, it is straightforward to show that the comparative

statics on Type II errors mirror exactly those for Type I

errors. Perhaps unsurprisingly, the same factors that in-

crease acceptance rates (and Type I errors) reduce Type

II errors. All values of c e or c s are therefore Pareto opti-

mal. For all histories, Type II errors are increasing in k and

weakly decreasing in c s. Accordingly, our analysis suggests

that disease advocates, by placing more weight on Type II

errors, would likely support lower quality standards and

higher submission costs.

Another kind of Type II error can occur if the submis-

sion of a product that R would accept is delayed. Due in

part to the demand for treatments for HIV and other life-

threatening illnesses in the 1990s, patient advocates have

pushed extensively for procedures that would reduce ap-

proval times, and hence delay-induced errors.9 Our model

provides a simple way of predicting submission delays.

After one experiment, only the high type’s product is ac-

ceptable to R. In the ESE, these products are submitted,

while in the LSE they are not. An “unwanted” submission

delay therefore occurs in the LSE with probability pm/n.

The LSE requires that k > x̃1, which implies a low value

of p. Thus, low ex ante confidence in the product inhibits

early acceptances.10

A final class of Type II errors occurs if F stops de-

velopment of a potentially acceptable product. This does

not occur in our model because abandonments only oc-

9In response, regulations passed in 1992 and 1997 allowed the use
of “surrogate markers”—which are less conclusive than the tradi-
tionally used “clinical endpoints”—to establish the efficacy of a new
drug. See Section 112 of the FDA Modernization Act of 1997 (21
USC 351), and the Accelerated Approval Rule (21 CFR 314, 601).

10If players expected the ESE to be played when both equilibrium
types exist, then the LSE also becomes less likely when ES holds
(i.e., low experimentation and high submission costs).
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cur when the low type withdraws after one failure. By

assumption, such products could never be acceptable to

R. However, if the model were extended to allow more

experimentation, or cases where k < m/(n + 2), then a

low firm type might be induced to abandon a potentially

good product after an initial experimental failure.

Data

Our statistical data for testing the model’s predictions are

drawn from a larger database of 32,216 molecular entities

that have been developed to some stage of product matu-

rity over the past 30 years under the system of pharma-

ceutical regulation in the United States. In part because

U.S. regulatory authorities track drugs from preclinical

stages to postapproval experience on the market, U.S.

pharmaceutical development and regulation are some of

the most heavily documented political-economic activi-

ties in the world, offering large amounts of fine-grained

data for analysis.11 We have collected these data from a

variety of sources, including Freedom of Information Act

requests to the FDA, FDA archives, FDA Annual Reports

from its drug reviewing divisions, F-D-C (Food, Drug, and

Cosmetic) Reports, and the trade database Pharmapro-

jectsTM. Where our data concern recent products, we rely

more heavily upon trade reporters and databases. Where

our data concern older drugs, we rely much more heavily

upon FDA sources, checked against the data of Dranove

and Meltzer (1994) and PharmaprojectsTM.

Of the 32,216 molecular entities in total, 15,282 are

“preclinical” drugs that have not yet been tested on hu-

mans. Of the remaining 16,934, we have reliable clinical

development data on 16,723, of which 16.7%, or 2,789,

were eventually submitted to the FDA. The others have

been abandoned or are currently in a limbo R & D sta-

tus. Our analyses here sample only the approved drugs,

though it is worth remarking that a richer estimator would

consider the quasi-selection effect by which some drugs

get submitted and others get abandoned.

Measuring Type I Errors. We confine our statistical

analysis to Type I errors or “bad” approvals. The reason

for doing so concerns the complexity of Type II errors.

Coding Type II errors as drugs that are rejected in the

United States but accepted and prescribed with relative

success elsewhere would yield a very small set that pre-

cludes statistical analysis with regressors. The reason is

that most drugs that are approved in overseas markets are

11Scholars have only recently begun to analyze pharmaceutical reg-
ulation and development using the richest data available, so the
extensiveness of documentation has not been accompanied by ex-
tensiveness of study.

eventually approved in the United States. It would also

be almost impossible to know what drugs were wrongly

rejected everywhere, as this would require information

that was presumably unavailable to regulators and medi-

cal authorities. Hence Type II errors are better quantita-

tively measured in terms of delay, not absolute rejection,

though this task presents considerable difficulties as well

(Carpenter 2002, 2004; Dranove and Meltzer 1994).

Even restricting our analysis in this way, measurement

of Type I error presents some difficult questions. How

would we know, after the fact, that the FDA had made a

bad approval decision? There is no way of knowing this

with certainty, but several observables would seem to be

correlated with such events.

First, a Type I error is more likely to have occurred

when, after the approval of a new molecule, the FDA sig-

nificantly revises the drug’s labeling. That is, the FDA must

attach evidence of new contraindications, or new side ef-

fects, that are serious in some way. This was precisely the

intuition of the U.S. General Accounting Office (GAO)

when it produced a report on “postapproval risks” of FDA-

approved drugs (U.S. GAO 1990). This report determined

whether there had been a “significant” labeling revision

for the drug, and if so, what those labeling revisions were.

In part to ensure that the subjectivity of coding Type I

errors is placed elsewhere, we adopt straightforwardly the

GAO assessments for the dependent variable GAO Lines.

GAO Lines is the number of lines of text describing sig-

nificant labeling revisions in the report and is scored 0 for

all unrevised drugs. This variable amounts to an implicit

assumption that the Type I error was worse where more

ex post revisions were added to the labeling, as detected

and reported by the GAO. One drawback of these data

is that we can only focus on NMEs approved from 1976

to 1985, and then only on the 198 drugs that the GAO

selected for study. We are missing firm data on two of the

drugs in the report, making our effective sample size 196

molecular entities.

Second, if international regulatory decisions are at

least somewhat independent of the FDA’s, then we could

infer Type I errors from approval and recall decisions for

overseas markets for the same molecule, after approval

by the FDA. Our second set of measures uses interna-

tional comparisons in precisely this way. We define two

indicators of a Type I error (many others are possible).

We first code whether a drug was removed from at least

one foreign market in a “highly developed” (HD) country

(Withdrawn). One can adjust the cutoff here by specify-

ing the number of withdrawals in HD countries (2, 5, 10,

or more) necessary for the FDA’s approval to qualify as

a Type I error. Next, we also examine those HD markets

where the drug never entered. If the drug failed to en-

ter five or more markets in highly developed countries
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(No Entry), then it is likely that overseas regulators were

less enthusiastic about the drug, and that they wished to

avoid a Type I error that the FDA may have committed in

approving the molecule.

Measuring Experimentation Cost (c e). There are two

dimensions along which c e can be thought to vary. The

first, which we use here, is by firm (sponsor). One can

think of experimentation cost as inversely related to firm

size and experience. Larger firms should face lower ex-

perimentation costs, in part because they have (probably)

already developed products with similar R & D processes

in the past, in part because R & D obeys economies of

scale. We measure size and experience jointly, by calcu-

lating the number of previous investigational new drugs

(INDs) developed at the date of submission of the new

drug application (NDA) for the molecular entity in ques-

tion to the FDA. We label this variable Firm INDs and

the log of this variable Log Firm INDs. This variable has

the advantage of changing over time, by firm, allowing

for firm-specific effects in our estimations. This measure

is also less sensitive to shocks than size measures based

upon sales or revenues, which are highly dependent upon

patent expiry and other “denominator” effects.12

Measuring Submission Cost (c s). It is more difficult to

produce a finely grained measure of submission cost that

would differ from experimentation cost. One tempting

possibility is to consider onerous aspects of the regula-

tory process as a sort of submission cost. For instance,

the FDA imposes hundreds of stylistic and procedural re-

quirements upon new drug applications, and if the agency

judges that a firm has not met these requirements, it can

issue a “refusal-to-file” (RTF) judgment. One testable im-

plication is that, where these requirements become more

stringent, empirically observed acceptance probabilities

will rise, ceteris paribus. However, changes in these reg-

ulatory submission requirements are difficult to measure

other than by indicator (dummy) variables indexing when

the requirements changed, and changes in these require-

ments are so common as to render this infeasible.

The larger problem here is that any firm-level variable

measuring submission cost is likely to be highly corre-

lated with firm-level covariates of experimentation cost.

Since the estimated costs of clinical development are much

greater than the estimated costs of regulatory submission

(Dranove and Meltzer 1994; Wardell and Lasagna 1975),

12Another plausible source of variation in c e is by disease. Diseases
that have a higher hospitalization burden are typically more costly
per patient in clinical trials, in part because the trial will often have
to pay the cost of hospitalization for treatment and placebo arms.
By asking how costly a clinical trial is for patients with a given
disease it may be possible to “back out” reasonable estimates of c e

from aggregated grants or clinical trials data. We do not attempt
this approach here.

we think it is preferable to use firm size to measure exper-

imentation cost and not submission cost.

We focus on a more blunt measure, namely the in-

fluence of the Prescription Drug User Fee Act (PDUFA)

of 1992 and its expected effects upon drug approval times

(Olson 2000). The law requires firms to submit a user

fee with each new drug application to the FDA (in FY

2004, $573,500 for a new drug application requiring anal-

ysis of clinical data; Federal Register 68(148), August 1,

2003, pp. 45, 249–45, 252). The PDUFA dummy variable

is scored 1 for products submitted after 1992.

While PDUFA may have raised nomimal submission

costs by requiring all sponsors to pay for each new NDA,

in fact the law was widely predicted to reduce firm costs

by accelerating FDA drug review. As part of the deal that

secured the PDUFA legislation, it was agreed that the pro-

ceeds from user fee payments would go to hire more re-

viewers at the FDA’s Center for Drug Evaluation and Re-

search. It was understood by all that the explicit goal (and

probable effect) of this legislation would be to reduce FDA

review times for new drug applications. As one report de-

scribed the legislation in 1992:

In return for collecting what is expected to

be about $300 million over the next five years

from companies that want their drugs reviewed,

Dr. David Kessler, the Commissioner of Food and

Drugs, agreed to hire 600 new examiners to speed

drug approval . . . . The plan is considered po-

litically feasible because . . . F.D.A. estimates that

companies may earn an average of $10 million

for each additional month they have a drug on

the market.13

As part of the 1992 agreement, the FDA agreed to re-

view 90% of all “standard” new molecular entities within

12 months or less by 1997, and agreed to review 90% of

“priority” drugs within six months or less. In part be-

cause of the review time goals and in part because of the

enhanced resources, approval times did fall appreciably

in the years following PDUFA’s enactment. Importantly,

while FDA review times fell following PDUFA’s enact-

ment, clinical development (experimentation) times did

not.14 Hence the user-fee regime seems to have affected

submission costs much more than pre-NDA experimen-

tation costs.

13See Philip J. Hilts, “Senate Passes Bill to Charge Makers for Drug
Approval,” New York Times October 8, 1992.

14See U.S. General Accounting Office, FDA Review Time for Drugs
Has Decreased in Recent Years, GAO/PEMD-96-1 (Washington:
GAO, October 1995), and Carpenter et al. (2003).
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The remaining question is whether variation in ap-

proval times properly measures variations in submission

cost. Here it is important to remember that, when a drug

is submitted to the FDA, three phases of clinical trials

have been completed.15 Hence the direct experimentation

costs have already been expended. A reduction in FDA

approval time then clearly reduces a drug’s development

cost but does not by definition influence the cost of ex-

perimenting with the drug. Hence a reasonable inference

is that the user-fee regime has reduced the submission-

cost component of drug development cost, and not the

experimentation-cost component.

Since the user fees are quite small (ranging from

$240,000 to about $1,000,000) relative to the capitalized

benefits of earlier approval (Carpenter 2004; Carpenter

et al. 2003), the implicit benefits of acceleration outweigh

the explicit increase in user-fee cost, and so the onset of

PDUFA should be conceived as having reduced c s.

While a firm-level measure of submission cost would

be superior, and while our measure is admittedly blunt,

we believe that any firm-level measure of submission cost

would pick up variation in experimentation cost. We ac-

knowledge the weaknesses of our measure, as other time-

varying factors could be influencing the FDA’s error rate

while not necessarily measuring submission cost.

Measuring Early and Late Submission Regimes. Be-

cause many of the model’s comparative statics depend on

the length of experimentation, we often restrict the sam-

ple to only those products with sufficiently long or short

development times, and to only those products submitted

by sufficiently large or small companies. Beginning with

development time restrictions, for each drug, the vari-

able IND Time measures the number of months it held

IND status. To get at drugs that have been developed for a

greater or lesser time, we compute quantile information

for the IND Time distribution and use these quantiles

as cutoffs. For example, if the mean of the IND Time is

72 months, one way of differentiating “long experimen-

tation” from “short experimentation” is to consider all

drugs for which IND Time < 72 as “short” and all drugs

for which IND Time > 72 as “long.” As a robustness check

and as a way of revealing theoretically relevant patterns

in the data, we replicated our analyses across numerous

cutoff points at different quantiles.16 We conduct an anal-

ogous set of “regime” restrictions for the Log Firm INDs

variable.

15In rare instances such as under “accelerated approval” rules, drugs
are submitted after Phase II clinical trials.

16Not all of these analyses are shown here. A fuller set of results is
available from the authors upon request.

TABLE 1 Summary Statistics

Variable Mean SD N

GAO Lines 5.60 8.80 196

Log Firm INDs 1.91 0.96 196

Hospitalization Length 2.84 3.84 196

Withdrawn 0.061 0.241 1071

No Entry 0.029 0.168 1071

Log Firm INDs 2.86 1.53 1071

Hospitalization Length 2.14 3.77 1071

Controls. For all analyses, we control for firm fixed

effects.17 Where relevant, we also control for a brute time

trend by including the year in which the NDA was submit-

ted (Submission Year). The final control we use through-

out is a blunt but effective measure of the severity or costli-

ness of the disease targeted by the drug in question. For the

primary indication of the drug, we calculate from the U.S.

federal government’s Health Care Utilization Project data,

the average number of days of hospitalization per hos-

pitalization. We call this variable Hospitalization Length

and assign a value of zero whenever there are no recorded

hospitalizations for a disease. This variable covaries pos-

itively with the mortality of a disease and its expected

cost of treatment. It is also negatively and significantly as-

sociated with FDA approval times for NMEs (Carpenter

2002).

Summary. Descriptive statistics for the most impor-

tant variables appear in Table 1. The first half of the table

details the GAO data. Exactly half of in-sample NMEs

approved from 1976 to 1985 were subject to “serious”

postapproval labeling revisions and therefore had nonzero

GAO Lines values. The maximally revised labeling had 48

lines.

The second half of the table covers the international

comparison data. Here the frequency of Type I error as

coded by international comparison is much smaller. Only

6.1% of NMEs approved by the FDA from 1984 to the

present were approved but then withdrawn in one or more

highly developed markets (Withdrawn). The fraction of

entities approved by the FDA but that failed to enter five

or more highly developed foreign markets is 2.9% for this

period (No Entry). Notice that because our international

comparisons data is of more recent vintage, the firm size

variable has a sample distribution with higher mean and

higher variance than the sample distribution for drugs

studied by the GAO.

17We also control for disease category fixed effects, e.g., cardiovas-
cular drugs, oncologic drugs, drugs for the central nervous system,
etc. These results are not shown here but yield substantially similar
results and are available from the authors upon request.



REGULATION WITH ENDOGENOUS AGENDAS 847

TABLE 2 Predicted Effects on Type I Error

Low IND Time High IND Time

Firm Sub. Firm Sub.

Size Cost Size Cost

Low Firm INDs (high c e) 0 0 0 +
High Firm INDs (low c e) + + − +

Estimation and Results

We test the comparative statics of the model in a multivari-

ate setting, using a mix of robust general linear models and

maximum likelihood estimators. Some of the hypotheses

are counterintuitive and depend on subsamples. To dif-

ferentiate subsamples from one another, we use cutoffs

given by the sample means of (logged) previous firm sub-

missions and development time (in months; see Table 1).

We do this in order to construct an artificial sample sim-

ilarity with empirical regimes with low experimental cost

and longer experimentation. Additionally, our measure

of firm size, Firm INDs, is inversely related to c e . Table 2

summarizes the predicted coefficient signs by subsample.

GAO Data

We begin with analysis of the GAO data. In Table 3, we

regress GAO Lines on the relevant regressors using nega-

tive binomial regression.18 By Table 2, we have four predic-

tions. First, for drugs that are submitted relatively early

and by low-c e firms, we predict that Type I error is in-

creasing in Firm INDs. In specification (1) of Table 3,

we present estimates derived from two truncated samples

restricted to larger firms and drugs with shorter develop-

ment times. There is some support for this hypothesis.

The coefficient on Firm INDs is generally positive but at-

tains statistical significance at the p < 0.05 level only in

the smaller subsample where investigational development

time is 72 months or less.19 The coefficient estimates in

the sample with IND time less than 96 months is not sta-

tistically differentiable from zero. If the larger of these two

estimates is used, a one standard deviation hike in previ-

ous INDs (39.4 INDs previously submitted) is associated

with a 2.8-line increase in the length of GAO listing.

Our second prediction is that, for products charac-

terized by longer experimentation times and submitted

18We also analyzed the data using a binary dependent variable, that
is, examining whether or not the drug was listed at all in the GAO
report. This produces results similar to those reported here.

19This is due in part to the inclusion of fixed effects, which raise the
standard error associated with Log Firm INDs.

by larger firms, Type I errors should be decreasing in c e .

By the results of the third section, long experimentation

and low c e should be associated with a reversal of the

comparative static on Firm INDs. In specification (2) of

Table 3, we present estimates derived from truncated sam-

ples in which analysis is restricted to larger firms and drugs

with longer development times. As predicted, the coeffi-

cient estimate on Firm INDs is negative, and this estimate

is statistically significant. Here the marginal effects are

smaller, about one-half-line increase in the GAO listing

for the larger subsample (with development time greater

than 72 months), and only a one-eighth-line increase in

GAO listings for the smaller subsample.20

The final two predictions correspond to the high c e

empirical regimes, where the model predicts that firm

size should have no effect. Specifications (3) and (4) of

Table 3 show that we cannot reject the null of zero, which

modestly supports the hypotheses of zero association.

Although we do not report them here, these results

are generally replicated if we use generalized linear re-

gressions with heteroskedasticity corrections for these

variables. In particular, regressing Log GAO Lines (where

LogGAOLines = ln(1 + GAOLines)) upon Log Firm INDs

yields results that are substantively identical to those of the

maximum likelihood models.

International Data

We now turn to the sample of drugs approved over the

past 25 years (N = 1071) and employ our measures

of Type I error as coded via international comparison.

Again we use the relevant sample mean Log Firm INDs

(approximately 3) as a cutoff in splitting subsamples from

one another. Aside from the larger sample, the primary

benefit of this dataset is that it allows us to test for the

effects of the PDUFA dummy, PDUFA. We predict that

PDUFA should decrease Type I errors under both short

and long experimentation. We again include firm fixed

effects. This results in a material reduction in sample size

for these models, mainly because the fraction of ones in

the sample dependent variable is so small.21 Hence any

time that a firm has never had a foreign withdrawal in

our dataset, or anytime that a firm has never been denied

20It merits note that in these samples the development time data
are left-skewed such that movements that are several multiples or
more of the standard deviation are common.

21We have also estimated extreme-value regression models (which
embed the assumption of asymmetric link functions) for these
samples. The extreme-value regression estimates do not change
substantively; they remain statistically differentiable from zero and
retain their signs. Estimated marginal effects are also similar to those
retrieved from probit regressions. See the supplementary appendix
for the results.
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TABLE 3 Negative Binomial Regression Analyses of GAO Coded Error

Dependent Variable: GAO Lines

(1) (2) (3) (4)

Firm INDs 0.173 0.019 −0.026 −0.059 0.085 0.440 0.036 −0.246

(0.071) (0.032) (0.014) (0.023) (0.362) (0.287) (0.125) (0.149)

Hospital. Length −0.185 −0.145 −0.016 −0.023 −0.004 0.070 −0.160 −0.211

(0.086) (0.039) (0.046) (0.079) (0.095) (0.082) (0.049) (0.080)

Submission Year −0.054 0.206 0.030 0.075 −0.164 −0.131 −0.003 −0.008

(0.934) (0.106) (0.010) (0.024) (0.171) (0.079) (0.009) (0.008)

Constant 107.03 −406.60 −56.44 −145.23 326.79 259.93 6.704 17.57

(184.50) (210.27) (18.82) (47.95) (339.27) (156.77) (18.85) (17.23)

N 18 34 66 50 19 31 93 81

Log Firm INDs >2 >2 >2 >2 <2 <2 <2 <2

IND Time (mos.) <72 <96 >72 >96 <72 <96 >72 >96

Note: All models have firm fixed effects and heteroskedasticity-consistent standard errors.

TABLE 4 Probit and GLS Regression Analyses of Internationally Coded Error

Dependent Variable: Withdrawn

(1) (2) (3) (4)

LPM Probit LPM Probit LPM Probit LPM Probit

Log Firm INDs 0.016 0.371 −0.042 −0.362 0.019 0.497 −0.004 −0.041

(0.043) (0.453) (0.023) (0.179) (0.018) (0.327) (0.018) (0.155)

Hospital. Length −0.006 −0.066 −0.005 −0.068 −0.004 – −0.004 −0.037

(0.004) (0.063) (0.003) (0.043) (0.003) (0.003) (0.027)

PDUFA −0.131 – −0.036 – 0.027 0.560 −0.031 −0.405

(0.053) (0.044) (0.031) (0.564) (0.026) (0.435)

Constant 0.096 −2.226 0.233 −0.037 −0.008 −2.985 0.060 −1.551

(0.155) (1.842) (0.089) (0.845) (0.027) (0.776) (0.027) (0.238)

N 151 45 286 205 132 78 457 360

Log Firm INDs >3 >3 >3 >3 <3 <3 <3 <3

IND Time (mos.) <120 <120 >120 >120 <120 <120 >120 >120

Note: All models have firm fixed effects and heteroskedasticity-consistent standard errors.

entry into five or more foreign markets, the inclusion

of an indicator variable for this firm produces a perfect

prediction, and the variable is dropped from the probit

analysis.

We first test our hypotheses by estimating GLS and

probit regression models. Table 4 presents linear prob-

ability and probit regression results for the dependent

variable Withdrawn. Here the results are quite interest-

ing for the Log Firm INDs variable. In specification (1),

where the sample is restricted to drugs produced by large

firms and excludes drugs with long IND times, the co-

efficient estimates are positive but not statistically sig-

nificant. However, in specification (2), where the sam-

ple is restricted to large firms and long IND times, we

observe negative coefficient estimates, as predicted, and

these estimates are statistically differentiable from zero.22

Marginal effects computations from the statistical model

suggest that, in the “late-submission equilibria” empirical

regimes where we observe statistically significant associa-

tions, a one standard deviation increase in Log Firm INDs

22A direct statistical comparison of these coefficient estimates, or
a joint test, would not be a valid test of the model, since one can-
not compare comparative statics across equilibria in a Bayesian
game. We can only test whether the coefficient estimates are pos-
itive and nonzero in one regime, and negative and nonzero in the
other regime. In many of these subsamples collinearity induces the
dropping of PDUFA, but when it is included it is never statistically
distinguishable from zero.
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TABLE 5 Binary Analyses of Internationally Coded Error (Effects of PDUFA)

Dep. Var.: Withdrawn Dep. Var.: No Entry

Probit LPM Probit LPM

Log Firm INDs 0.103 0.007 0.139 0.005

(0.096) (0.008) (0.157) (0.005)

Hospitalization Length −0.049 −0.004 −0.127 −0.004

(0.021) (0.002) (0.048) (0.001)

�E (Approval Time) 0.170 – 0.674 –

(0.126) (0.195)

�E (Approval Time)∗ – 0.009 – 0.020

(∗instrumented by PDUFA) (0.009) (0.006)

Constant 44.26 4.90 −10.85 −1.27

(23.05) (2.59) (34.66) (1.51)

N 956 1026 851 1026

Note: All models have firm fixed effects and heteroskedasticity-consistent standard errors.

is associated with a 9.0 percentage point decline in Type

I errors (this corresponds to a 97% decline in the sample

rate of error). Finally, in the third and fourth empirical

regimes (high c e , or low INDs), where the model predicts

no variate relationship of experimentation cost and error,

we cannot reject the null of zero.

The estimates in Table 4 also allow for a partial test of

our hypotheses on submission costs. If PDUFA lowered

submission costs, it may have also induced a lower Type I

error rate at the margin. Across the various subsamples de-

fined by the submission and withdrawal conditions, there

is inconsistent support for this hypothesis from Table 4.

Specification (1) yields the predicted statistically signifi-

cant negative coefficient estimate. Specifications (2) and

(4) have the correct sign, but we cannot reject the null

hypothesis of no relationship. Finally, the model predicts

no relationship in specification (3), and we cannot reject

that hypothesis.

Better traction on this hypothesis is had from exam-

ining the “full sample” for effects of secular changes in the

cost of submission. Because c s has a nonnegative compar-

ative static in all cases, we can combine the cases and test

for a positive relationship between submission cost and

Type I error (equivalently, a negative relationship between

PDUFA and Type I error). Table 5 shows the results of four

regressions. In the first two specifications, the dependent

variable is the same as in Table 4, Withdrawn, while the

last two use No Entry. All models include a measure of

submission cost as well as a time trend, which is the year

in which the molecule in question commenced develop-

ment. Some plausible evidence for the validity of these

indicators comes in the fact that the measured covariates

are of the same sign across specifications, significantly so

for the hospitalization and time trend covariates. Notice

that once the full sample is examined without theoret-

ically relevant conditions and restrictions, simple linear

inclusion of Log Firm INDs does not add to the model’s

predictive power and does not yield coefficient estimates

statistically differentiable from zero.

In the probit regressions (first and third columns),

submission cost is measured as the (differenced) series

in median approval time, calculated for the submission

year of the molecule in question as �E (ApprovalTime).

In toto, this represents firms’ generally unconditioned ex-

pectations about the time- or delay-cost of their submis-

sion. In the linear probability models, we instrument for

�E (ApprovalTime) with PDUFA.23 The idea here is that

PDUFA represents a shift in expected approval times that

was anticipatable by submitting firms. Here we find more

robust associations between the instrumented change in

median approval time and Type I error rate.

Rather strikingly, the estimates suggest that reduc-

tions in approval time may be associated with less Type I

error, not more. All four estimates are positive, but they are

statistically significant only in the No Entry regressions.

This is counterintuitive in light of recent debates and ar-

guments which suggest that PDUFA may have raised the

occurrence of Type I errors (see Avorn 2004). Since our

data offer no measure of severity and our model assumes

homogeneity of Type I error, we cannot make statements

here about PDUFA’s welfare effects. Additionally, these

23This was done as follows. For each drug in the more recent sample,
we calculated the (annual) change in mean approval time for all
drugs submitted in the same year. We then regressed this variable
upon PDUFA and retrieved the predicted values of the change in
approval time. This variable enters the linear probability model
regressions as a right-hand-side covariate; it is unwarranted to use
this instrumented variable as a linear regressor in the probit models.
We do not present the corrected standard errors in the table here.
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relationships are hypothesized to hold at the margin, and

so PDUFA may have had effects on other institutional pa-

rameters that influence error but are not captured by our

model.

Summary and Caveats

We find appreciable support for our primary hypotheses,

though the pattern of support differs based upon the hy-

pothesis examined. For our more intuitive hypothesis—

that where experimentation cost is low and development

times are shorter, Type I regulatory error is increasing

in firm size or experience—we find mixed support, with

positive coefficient estimates that are statistically signif-

icant only in some subsamples. For our more counter-

intuitive hypothesis—that where experimentation cost is

low and development is longer, increases in firm experi-

ence are accompanied by reductions in Type I error—we

find consistent support across datasets and across speci-

fications. This inversion of statistical associations occurs

across two datasets and in each of two measures of Type I

error in each dataset.24 The results of Tables 3 and 4 lend

solid support to the predicted reversal of the comparative

static on c e across the low-c e subsamples.

We can test for effects of submission cost only brutely,

and only in our second set of analyses on more recent data.

There, the coefficient estimates for �E (ApprovalTime) in

Table 5 broadly support the hypothesis that by reducing

the cost of submission, PDUFA lowered the probability of

Type I errors. The coefficient for expected approval time

is positive in all estimations and significant in two, as well

as in a variety of specifications not reported here. If it

can be safely interpreted that PDUFA implicitly reduced

submission costs, then we have evidence that Type I error

rates are decreasing in c s. However, all of our causal lever-

age here is nonlinear over-time variation, so anything else

that might have occurred in the past 10 years, that co-

varies with PDUFA but not with a linear trend, and that

also covaries with Type I error rates, would confound our

inferences. Among these, better technology for detecting

drug hazards ex ante is one plausible candidate.

We conclude with two observations. First, we do not

attempt to attach any theoretical meaning to the estimated

effect of Hospitalization Length. However, it should be

noted that Hospitalization Length is only weakly associ-

ated with error as coded via international comparisons,

but sometimes negatively and robustly associated with

GAO-coded errors. Second, one weakness with No Entry

is that it may be determined as much by firms’ decisions

to avoid market entry as by regulators’ decisions to deny

24Somewhat stronger results are typically obtained if firm fixed
effects are removed in all models.

entry. If this is true, and if a significant component of No

Entry is affected by firm-level variables that are not re-

sponsive to anticipation of regulatory strategy (e.g., port-

folio factors in the company’s pipeline), then it is possible

that our inferences are subject to error from confounding

variables.

Discussion

Regulatory decision making and error are frequently

shaped by an endogenous agenda, which is determined

by a firm’s anticipation of the regulator’s behavior. In this

context, an important determinant of regulatory approval

is the credibility of the firm’s submission. The theory

produces several counterintuitive predictions about the

interaction between costs and the dynamics of research

and development choices. To date, these predictions have

not been generated by existing approaches to agency fail-

ure, either structural or cognitive. Empirical tests of some

predictions about Type I error are supported by data on

pharmaceutical relabeling, safety-based withdrawals, and

product introductions.

These results may be useful for guiding both theoreti-

cal and empirical research on a large class of regulation and

political economy problems. Two of these merit remark

here. First, government grant making and procurement

represent an appealing policy arena in which to apply the

model. In the United States alone, the National Science

Foundation and National Institutes of Health award over

$23 billion in grants and contracts annually, while the De-

partment of Defense spends over $84 billion on procure-

ment annually (figures taken from the Budget Request of

the President of the United States, FY 2007). Over $100 bil-

lion per year, then, is spent according to mechanisms

that resemble the game laid out here. Our model would

predict similar results based on the length and costs of

development, as well as the characteristics of the research

team or company. Second, while our empirical analysis

concerns the regulation of pharmaceuticals in the United

States, there are dozens of national and federation-based

regulators of drugs, medical devices, vaccines, and other

health-related goods throughout the world that play roles

similar to that of the FDA. In principle, at least, the same

sort of data could be gathered for these regulators as for

the FDA.

There remain features of approval regulation that

are poorly captured by our model. First, we could in-

corporate a richer regulatory phase by allowing the regu-

lator to audit, request additional testing, monitor the firm

post-approval, or decide according to more realistic de-

cision rules (such as the voting rules used by FDA review

teams). Second, the development phase may better reflect
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empirical reality by incorporating mandated minimum

pre-submission experiments (e.g., Phase I and Phase II

clinical trials) or “fast track” procedures. Finally, the the-

ory could incorporate actors such as a legislature, com-

peting firms, or interest groups, who may differ in both

their objectives and their abilities to detect and prevent

errors. We underscore the difficulty of adding these to the

present model while retaining analytic clarity, however.

As it stands, the approval regulation framework provides

a tractable foundation for studying bureaucratic decision

making and error in an environment with endogenous

information acquisition and submissions.

Appendix

Proof of Proposition 1. We derive the result by first con-

sidering histories where e1 = 1, then histories where e1 =
0. Finally, we check that all types experiment at t = 1.

Histories Beginning with e1 = 1. There are two cases.

First, if k ≤ x̃1, then if 	(�, ∅) = 1 ∀�, and �(�, 1) =
1 ∀� (i.e., both types experiment and submit if success-

ful), then x̄(ht) > k and R accepts the submissions. Since

E [E [x | h3] | h2 = 1] = E [x | h2 = 1], F can do no

better by conducting another costly experiment. R’s out

of equilibrium beliefs about � in the event that F contin-

ues experimenting are therefore inconsequential. Thus,

�∗(�, 1) = 1 ∀� and �∗(1) = 0.

In the second case, k > x̃1. In this case, at t = 2 P

would reject submissions if 	(�, ∅) = 1 ∀� and �∗(�,

1) = 1 ∀�. Note, however, that if only type �̄ submits,

then x̄(ht) > k and �∗(ht ) = 0. This induces both types

to submit, which forces x̄(ht) < k and creates an obvi-

ous contradiction. Thus, type �
¯

must submit with some

interior probability when h2 = 1. Since this implies indif-

ference between submission and either continued exper-

imentation or withdrawal, we have:

(1 − �∗(1))
m

n + 1
− cs = v(�

¯
, 1)

⇔ �∗(1) = 1 − n + 1

m
(v(�

¯
, 1) + cs ) .

(15)

For R to choose an interior probability of rejection, it

must be indifferent between acceptance and rejection. As

a candidate for an equilibrium, suppose that 	∗(�, ∅) =
1 ∀� and �∗(�̄, 1) = 1. Then indifference by R at t = 2

implies:

k = p m
n

m + 1
n + 1

+ (1 − p) m − 1
n

m
n + 1

�∗(�
¯
, 1)

p m
n

+ (1 − p) m − 1
n

�∗(�
¯
, 1)

,

which yields �∗(�
¯
, 1) = pm(m + 1 − k(n + 1))

(1 − p)(m − 1)(k(n + 1) − m)
.

Now note that because �∗(�̄, 1) = 1, the history h3 =
(1, 0) implies that �((1, 0), S) = 0. Because k > m

n + 2
, this

implies �∗(1, 0) = 1 and �∗(�, (1, 0)) = 1for all �. Using

(7) and (8), it is then straightforward to derive v(�
¯
, 1) if

R continues experimentation:

v(�
¯
, 1) = m

n + 1

(
m + 1

n + 2
− cs

)
− ce . (16)

Since the right-hand side of (16) is strictly positive by (1)

and (2), type �
¯

prefers submitting or experimenting at

h2 = 1 to withdrawing. Thus �∗(�
¯
, 1) = 0 and 	∗(�

¯
, 1) =

1 − �∗(�
¯
, 1).

Substituting (16) back into (15), we obtain:

�∗(1) = n − m + 1

n + 2
+ n + 1

m
ce − n − m + 1

m
cs . (17)

We finally verify that type �̄ in fact prefers submitting

to experimenting when h2 = 1:

(1 − �∗(1))
m + 1

n + 1
− cs > v(�̄, 1)

(m + 1)2

(n + 1)(n + 2)
− m + 1

m
ce

+
(

1

m
− m + 1

n + 1

)
cs >

m + 1

n + 1

(
m + 2

n + 2
− cs

)
− ce

cs − ce >
m(m + 1)

(n + 1)(n + 2)
,

which is ensured by condition ES (12).

Histories Beginning with e1 = 0. There are two cases.

First, suppose that both types continue experimentation

with positive probability in period 2. If e2 = 0, then clearly

�∗(�, (0, 0)) = 1. If e2 = 1, then type �̄ is acceptable to R

(i.e., m + 1
n + 2

> k), and type �
¯

is not (i.e., m
n + 2

< k).

Note that in equilibrium, type �
¯

must strictly pre-

fer submission to withdrawal at h3 = (0, 1). Otherwise,

v(�
¯
, (0, 1)) = 0, but because c e > 0, experimentation at

t = 2 would imply that v(�
¯
, 0) < 0. Thus period 3 sub-

missions yield strictly positive payoffs for both types, and

so �∗(�, (0, 1)) = 1 for all �. Further, type �
¯

can only be

present at t = 3 if it weakly prefers experimentation to

withdrawal at t = 2; hence v(�
¯
, 0) ≥ 0, or:

m − 1

n + 1

(
m

n + 2
(1 − �∗(0, 1)) − cs

)
− ce ≥ 0. (18)

This implies �∗(0, 1) ≤ 1 − n + 2
m

(
n + 1
m − 1

ce + cs

)
, and also

that type �̄ experiments at h2 = 0 (i.e., 	∗(�̄, 0) = 1 and

v(�̄, 0) > 0). To ensure that �∗(0, 1) ≥ 0, EW (13) must

not hold. There are two subcases for 	∗(�
¯
, 0), depending

on x̄(0, 1). If x̃2 ≥ k, then �∗(0, 1) = 0 and 	∗(�
¯
, 0) = 1.

Otherwise, at an interior �∗(0, 1), x̄(0, 1) = k and thus
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	∗(�
¯
, 0) must satisfy:

k = p
(

n−m
n

) (
m

n+1

)
m+1
n+2

+ (1 − p)
(

n−m+1
n

) (
m−1
n+1

)
m

n+2
	∗(�

¯
, 0)

p
(

n−m
n

) (
m

n+1

) + (1 − p)
(

n−m+1
n

) (
m−1
n+1

)
	∗(�

¯
, 0)

,

which yields 	∗(�
¯
, 0) = p(n − m)m(m + 1 − k(n + 2))

(1 − p)(n − m + 1)(m − 1)(k(n + 2) − m)
.

To maintain this interior experimentation probability,

let �∗(0, 1) = n+2
n

(
n+1
m−1

ce + cs

)
. Finally, it is clear that

�∗(�
¯
, 0) = 1 − 	∗(�

¯
, 0).

Second, suppose that only the high type experiments

with positive probability in period 2. If EW (13) holds

then (18) cannot hold for any �(0, 1) ∈ (0, 1). In this case

type �
¯

must withdraw after a failure (i.e., �∗(�
¯
, 0) = 1).

This implies that if 	∗(�̄, 0) > 0, then at h3 = (0, 1), �((0,

1), S) = �((0, 1), ∅) = 1. Because k < m + 1
n + 2

, R’s response

is to accept any submission: �∗(0, 1) = 0. Given �∗(0, 1)

and (1) and (2), type �̄ receives strictly positive expected

utility from experimenting and submitting upon success,

and thus we have 	∗(�̄, 0) = 1 and �∗(�̄, (0, 1)) = 1.

Finally, we verify that 	∗(�, ∅) = 1 ∀�. It is suf-

ficient to ensure that 	∗(�
¯
, ∅) = 1, which will be the

case if m − 1
n

v(�
¯
, 1) − ce ≥ 0, or equivalently m(m − 1)

n + 1
×

( m + 1
n + 2

− cs ) − (n + m − 1)ce ≥ 0. It is easily checked that

this is implied by (1) and (2). Thus ES or k ≤ x̃ is sufficient

for existence of the ESE.

Supplementary Material

The following supplementary material is available for this

article:

Regulatory Errors with Endogenous Agendas: Supple-

mentary Appendix

This material is available as part of the online ar-

ticle from: http://www.blackwell-synergy.com/doi/abs/

10.1111/j.1540-5907.2007.00284.x (This link will take you

to the article abstract).

Please note: Blackwell Publishing is not responsible

for the content or functionality of any supplementary ma-

terials supplied by the authors. Any queries (other than

missing material) should be directed to the corresponding

author for the article.
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