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Protection without Capture: Product Approval by a Politically
Responsive, Learning Regulator
DANIEL P. CARPENTER Harvard University

When policy arrangements appear to favor well-organized and wealthy interests, should we
infer “capture” of the political process? In particular, might larger firms receive regulatory
“protection” even when the regulatory agency is not captured by producers? I model regulatory

approval—–product approval, licensing, permitting and grant making—–as a repeated optimal stopping
problem faced by a learning regulator subject to variable political pressure. The model is general but
stylistically applied to pharmaceutical regulation. Under the assumption that consumers are differentially
organized, but producers are not, there nonetheless exist two forms of “protection” for larger, older
producers. First, firms submitting more applications may expect quicker and more likely approvals, even
in cases where their reputations for safety are below industry average. Second, “early entrants” to an
exclusive market niche (disease) receive shorter expected approval times than later entrants, even when
later entrants offer known quality improvements. The findings extend to cases of bounded rationality and
a reduced form of endogenous firm submissions. The model shows that even interest-neutral “consumer”
regulation can generate protectionist outcomes, and that commonly adduced evidence for capture is often
observationally equivalent to evidence for other models of regulation.

The theory [of economic regulation] tells
us to look, as precisely and carefully as we
can, at who gains and who loses, and how
much, when we seek to explain a regula-
tory policy . . . . It is of course true that the
theory would be contradicted if, for a given
regulatory policy, we found the group with
larger benefits and lower costs of political
action being dominated by another group
with lesser benefits and higher cost of po-
litical action . . . .

The first purpose of the empirical studies
is to identify the purpose of the legislation!
The announced goals of a policy are some-
times unrelated or perversely related to its
actual effects, and the truly intended ef-
fects should be deduced from the actual
effects.

—–George J. Stigler, “The Theory of
Economic Regulation” (1975, 140)

The prospect for any change in the [OSHA
cotton dust] standard, however, is not great.
Now that the large firms in the industry
are in compliance, they no longer advocate
changes in the regulation. Presumably, the
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reason is that the capital costs of achieving
compliance represent a barrier to the en-
try of newcomers into the industry. This is
simply one more illustration of the famil-
iar point that surviving firms often have a
strong vested interest in the continuation of
a regulatory system.

—–W. Kip Viscusi (1992, 177)

Does government regulation favor larger, older
producers and impede smaller, newer firms? If
so, then why does government regulation have

such disparate effects? For decades, political scientists
and economists have turned to the “capture” theory
of regulation to explain these established-firm advan-
tages. Capture theory posits that larger and older firms
use regulation as a political substitute for economic
competition, constructing entry barriers against their
smaller and newer competitors (existing or potential)
or using regulation to impose disproportionate costs
upon smaller and newer firms (as Viscusi [1992] sug-
gests). Because larger firms are better able to organize
politically, the argument goes, they can induce politi-
cians and bureaucrats to behave in ways that constrain
smaller firms. Stigler’s moral is lucid: Given observed
firm advantages under a given regulation, we ought to
infer producer capture regardless of the stated purposes
of the law.

The reach of the capture argument is substantial; it
concerns general principles of politics and public pol-
icy. Under what conditions—–and with what evidence—–
should policymakers, scholars, and citizens conclude
that a government agency or program is politically
influenced or captured? When we observe that the
“actual effects” of policy seem to favor one group
or firm over another, should we proceed as Stigler
recommends and deduce that capture or some form
of distributive politics is at work? The central thrust
of this essay is that in many scenarios we should not
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do so, because observed patterns of policy advantage
and regulatory advantage are an insufficient condi-
tion for a valid inference of capture. Such patterns
may exist for many reasons unrelated to distributive
politics, and may exist even when the policy is neutrally
implemented. The pattern of inference recommended
by Stigler (1975; and widely used by Viscusi and many
others) is, then, often unwarranted.

In this essay, I reconsider firm-based disparities
in government regulation and ask whether they can
prevail even when regulation is not “acquired by the
industry,” as Stigler would posit. I ponder mathemati-
cally the world in which “capture” does not exist but
protection still might. Consider, then, the following
thought experiment: Suppose that a regulatory process
were established in which all firms were identical in
terms of political influence and quality. In this world,
no firm would possess either (1) political clout or (2)
a quality advantage over its competitors. Would larger
and older firms still receive more favorable decisions
from government regulators? The theory presented
here answers in the affirmative. I offer an optimal stop-
ping model of product approval that formalizes several
noncapture mechanisms that may account for larger-
and older-firm advantages in regulation. These mech-
anisms may cloud inferences of the sort that Stigler
recommends, but they may also interact with capture
to boost the advantages of larger firms. I focus here on
the duration of regulatory decisions, with particular ap-
plications to pharmaceutical regulation, an exemplary
case in which larger-firm advantage has been found
(Grabowski and Vernon 1976; Olson 1997; Thomas
1990).

Delay, Familiarity, and Consumer Pressure:
Why a Neutral Regulator Might Favor
Established Firms

When regulators face a stopping problem, or a deci-
sion of when to take costly action that is also costly to
reverse—–as in product approval decisions (Heimann
1997), licensing (Spence 1999), or even enforcement
litigation (Gordon 1999)—–larger and older firms have
several advantages. First, firms that market more prod-
ucts will be better known to the regulator, who will have
less uncertainty over the firm’s underlying qualities, for
instance, the ability to produce a safe product. I show
that even when regulators are neutral with regard to
risk, reduced uncertainty about firm attributes leads
to quicker decisions. Second, larger firms with greater
capitalization will often enter given market niches ear-
lier, and these niches may contain organized consumers
(e.g., AIDS sufferers) that the regulator wishes to sat-
isfy. Where this pressure is strong, such “early-entrant
protection” implicitly benefits large firms. Finally, be-
cause dynamically learning regulators are unlikely to
make immediate approval decisions, larger firms usu-
ally benefit because time is less costly for them relative
to their assets. In the case of product approval, a delay
for one product may cripple a start-up firm, whereas
a more established company can more easily absorb

the costs of delayed entry such as reduced cash flow,
prolonged investor uncertainty, and the like.

These advantages are shown to be quite robust. In
particular, the advantage of familiarity holds even in
cases where the familiar firm has a bad reputation
for product safety. In addition, early-entrant advan-
tages exist even under cases in which later entrants—–
products that enter the market for a given niche well
after the “early entrants” do—–offer superior products.

For two reasons, my purpose here is not to offer a
fundamental critique of the capture theory of regula-
tion. That has been done elsewhere, for one (Breyer
1982; Wilson 1980). A better reason is that the present
model actually illuminates the study of rent-seeking in
regulatory politics. As the model shows, there may be
complementarities between capture-based factors and
noncapture factors in effecting larger-firm advantages.
In industries where larger firms possess political rents,
these advantages may be heightened by the dynamics
illuminated here.

THE LOGIC OF LARGE-FIRM ADVANTAGE
IN REGULATION

“Larger” or “established” firms in an industry dif-
fer from their “smaller” and “newer” counterparts by
greater revenues, more products, greater diversifica-
tion of product lines, larger capitalization (more as-
sets), and enhanced tolerance of financial exposure.
They also enjoy relative advantages under numerous
forms of regulation—–ranging from price-setting insti-
tutions to content regulation (e.g., the Federal Commu-
nications Commission) to “consumer safety” measures.
Such advantages appear in numerous industries, rang-
ing from transportation (Rothenberg 1994) to telecom-
munications (Crandall and Flamm 1989; Noll 1973) to
pharmaceuticals (Grabowski and Vernon 1983).

In few markets is the power of the state to reward
firms greater than this last one, the pharmaceutical
industry. Throughout the industrialized democracies,
particularly in the United States, the very legal mar-
ketability of a drug product depends on prior approval
by government regulators. As a result of the 1938
Food Drug and Cosmetic Act, the U.S. Food and Drug
Administration (FDA) has sole authority to approve
prescription drugs for marketing. The state remains
the ultimate gatekeeper in the pharmaceutical industry,
both here and overseas.

The existence of systematic regulatory advantages
for larger firms in the pharmaceutical industry has been
well documented. Grabowski and Vernon (1976) argue
that “upward shifts in costs and risk produced by in-
creased [pharmaceutical] regulation . . . operate to con-
centrate innovation in fewer and larger firms” (190).
Thomas (1990) finds that the 1962 Amendments to the
Food, Drug and Cosmetic Act—–which required drug
companies to show effectiveness in addition to safety
before marketing—–caused heavier reductions in prod-
uct innovation among small firms than among large
firms. More recently, Olson (1997) finds quicker ap-
proval times for firms with greater employment and
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more FDA product applications, and Carpenter (2002)
and Kyle (2002) find that the speed and probability
of regulated entry into pharmaceutical markets are
(1) an increasing function of firm market experience
and (2) a decreasing function of previous entrants.
Employment and experience are characteristics highly
correlated with firm size, and early entry into a market
is per se correlated with age. Perhaps most crucial to
these advantages is the finding that larger and older
firms receive quicker approvals for their new drug ap-
plications (NDAs). Whatever advantages large firms
have in product development seem to be magnified by
FDA decision making.

The capture theory formulated by Bernstein (1955)
and Huntington (1953) and rendered more explicit by
Peltzman (1976) and Stigler (1975) offers a simple
and powerful explanation for these advantages. Be-
cause larger firms have lower marginal costs and higher
marginal benefits of political action, they can more
easily capture the regulatory process, either by shifting
legislation to their advantage (Stigler 1975, 123–28) or
by shifting the administration of an otherwise costly
law to their advantage (Stigler 1975, 162–66).1

In the past two decades, scholars have refined the
capture perspective by advancing “interest-group” and
“rent-seeking” theories of regulation (Becker 1985;
Rothenberg 1994). These views concede that producer
interests are not monolithic—–firm interests vary by
specialization and other things—–and that consumers
can also organize. Yet even these theories rarely shy
away from the premise that large firms in an industry
tend to dominate regulation. As Rothenberg (1994, 4)
argues, “The view that producer dominance is the
modal description of regulatory politics remains per-
haps the primary means of conceptualizing them for
popular commentators and scholars alike.” And as the
opening epigraph from Viscusi (1992) suggests, schol-
ars are still apt to follow Stigler’s advice for proper
inference when large-firm advantage is observed (see
also Bartel and Thomas 1987). For purposes of this
paper, then, the proposition that lies at the heart of a
“capture” account of regulation is that, by legislative
structure or by cozy relations with the industry, regu-
lators systematically favor large, established firms over
newer entrants and smaller firms.

Stigler’s argument is a powerful one and has use-
fully aided a generation of regulation scholars. Yet its
counsel that regulatory results justify inference about
regulatory mechanisms leaves open the possibility that
numerous factors may explain observed regulatory

1 References to Stigler’s original (1971) essay refer throughout to the
page numbers in The Citizen and the State. Stigler argues mainly in
terms of the industry erecting entry barriers to potential competitors,
but his argument is easily rendered in terms of larger firms erecting
barriers to smaller firms within an industry. To begin with, Stigler
frequently uses “the industry” to denote the larger and established
firms in a market. Moreover, if “smaller” firms are firms operating
on the boundaries of the industry, or as firms that were formerly
potential entrants, then the entire theory elaborated in Stigler 1975
and Peltzman 1976 applies straightforwardly to large- and older-firm
advantage. More recent analysts such as Viscusi (1992), Bartel and
Thomas (1987) and Thomas (1990) interpret capture in terms of
large-firm regulatory advantage.

outcomes. In particular, there may be cases where pro-
ducers have not “captured” a legislature or agency but
in which large-firm advantage prevails nonetheless.

Scholars have begun to recognize this possibility.
Olson (1997) has employed “external signals” theory
(Joskow 1974; Noll 1985) to suggest that regulators
see firm experience as one of several “signals” of
likely product quality—–other signals being R&D and
productivity—–and so condition their reviews accord-
ingly. Olson finds systematic evidence for this hypoth-
esis in a regression analysis of drugs approved from
1990 to 1992. Controlling for clinical factors and FDA
priority ratings, Olson finds that firms with greater
R&D, more employees and more FDA product ap-
plications receive shorter approval times for their drug
applications. A 1995 study by the General Accounting
Office (GAO; 1995, 32) also finds that firms with more
submissions receive shorter review times. Employment
and submissions are highly correlated with firm size.
Olson construes these results to mean not that larger
firms capture drug regulation but, rather, that a ratio-
nal agency interprets size-related firm characteristics
as signals or correlates of unobserved product quality.

If Olson’s argument is correct, then larger-firm ad-
vantage can exist even when regulators seek only to
reduce their Type I and Type II errors. Yet is this re-
sult generalizable? Would mathematical formalization
support the argument that an uncertain regulator will
indeed act more quickly when firm characteristics shed
light on product applications? What if the regulator
is risk-neutral? and What if the agency is in fact influ-
enced by the political clout of large firms? I am unaware
of any attempt to construct a systematic formal theory
that explores the firm-specific implications of approval
regulation by a politically responsive, Bayesian agency.

A DYNAMIC MODEL OF APPROVAL
REGULATION

Product approval presents the regulator with a learning
problem. The regulator must review a new product
application (with accompanying data) and decide when
the apparent benefits of the product outweigh the costs
or risks associated with its use.

Reputation and the Value of Delay

The basis of the model is that product approval regu-
lators guard their reputation for protecting consumer
safety. In the case of the FDA, this reputation may or
may not be “deserved” in the sense that historically
observed patterns of drug safety may be attributable
not to regulation but to quality improvements by
firms. Nonetheless, I assume that such a reputation
exists. Observers of the 1962 Amendments argue that
the FDA’s decision not to approve the drug thalido-
mide played a crucial role in the expanded discretion
that the agency received in the new law (Hilts 2003).
Historians (Jackson 1970) and political scientists
(Quirk 1980) have noted the political asset value of this
reputation. It can be used to generate public support, to
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achieve delegated authority and discretion from politi-
cians, to protect the agency from political attack, and to
recruit and retain valued employees (Carpenter 2001).

Given this concern for reputation, the agency views
its approval decisions as fundamentally irreversible (or
reversible only at cost). The fundamental trade-off
facing the regulator is one of time. Early approvals
benefit both the producing firm and the organized
consumers who may demand new products, and these
interests can make it politically costly for the agency
to delay. Yet regulatory delay buys time and infor-
mation—–the ability to review the firm’s potential new
product more carefully and to request more studies. As
in financial options, there is an informational value to
waiting, which is marginally decreasing as the agency
learns more (see Ting 2003 for a similar but more gen-
eral model of bureaucratic learning).2

The problem facing the regulator is one of stopping
the review only once the payoff of approval exceeds
both the reputational losses associated with the danger
of the product and the value of waiting for more in-
formation. In other words, simple cost–benefit analysis
applies poorly to this important class of administrative
choices. The rational agency does not approve the prod-
uct when its apparent danger is less than the payoff of
approval but will wait further.

Assumptions and Parameters

I stylize the model for the drug approval process as it
operates in the United States and other countries. By
regarding diseases as “markets” or “market niches,”
curing probabilities as product quality, and danger as
general “hazards” of a product, the model can be ap-
plied to other situations. Let all products be indexed
by i, markets (diseases) by j , and firms by k. The model
assumes an exogenous industry production process in
which the agency expects products to be submitted at a
constant rate λj > 0 over time. (I discuss this under The
Problem of Endogenous Submissions, below.) Products
are assumed to have “niche specificity”; that is, drugs
can treat one disease only.3

All products in the model are characterized by two
parameters. First, let γij (0 ≤ γij ≤ 1) be product quality
(for drugs, a curing probability of the drug, which can
be interpreted as the fraction of people with disease j
that drug i will cure). We assume that γij is fixed and

2 The agency as I model it is always averse to “danger” (more haz-
ardous products) but is also “risk-neutral.” Intuitively, risk-neutrality
implies that, given an expected outcome, the regulator is indifferent
to higher or lower levels of variance around that outcome. Put differ-
ently, the agency’s concern about uncertainty is endogenous to this
model, not assumed.
3 The one drug- one disease assumption can be relaxed without
affecting the general results of the model. Clearly the exogeneity
assumption here is violated in practice. Where the agency becomes
more stringent in its product approval decisions, firms will develop
fewer drugs and do so more slowly (Grabowski and Vernon 1983;
Peltzman 1973; Thomas 1990). For a model that endogenizes sub-
missions, see Carpenter and Ting 2004.

known with certainty throughout the agency’s decision
problem.4

Second, let µij be the danger of the product, which
can be thought of as the expected number of people
that will be harmed or killed by the product over a
given interval of time. Normalizing the interval to one,
µij may be thought of as the rate of harming consumers.
The greater the danger of the product, the more its ap-
proval will harm the agency’s reputation for protecting
public safety.

I assume throughout that a product’s danger is inde-
pendent of its quality, which implies cov(µij , γij ) = 0.
Because the product quality γij is niche-specific, this
independence is understood in a particular way. It is
possible that a “good” cancer drug could cure a pa-
tient’s cancer but induce such severe “side effects” in
doing so that the patient dies of other causes (e.g., liver
toxicity). I assume danger and quality are separable
because quality is disease-specific (the cure of a specific
ailment), whereas danger refers to literal “side effects,”
namely, the harm a drug may cause to some organ or
physiological process in the person’s body other than
that which was the drug’s intended target.5

Learning about Danger in Continuous Time. The
agency observes a series of experiments (e.g., clinical
trials) in which a product either harms or does not harm
the consumer. The sequence of binary outcomes—–
“harm” or “not harm”—–becomes the “data” for the
agency’s decision. The model posits the evolution of
these observations as a continuous-time Wiener pro-
cess, or “Brownian motion.”6 Casually, we may think of
Brownian motion as an “all-purpose” random process
in continuous time whose movements are described by
the Normal distribution.

Observed harm in regulatory review evolves accord-
ing to a Wiener process Xit = X(t), a linear function of
underlying danger (µij ) plus a random component, or

X(t) = µij t + σij z(t), (1)

where µij and σij are constants and σij > 0, and where
z(t) is a standard normal variable with mean zero and
variance t. A more “dangerous” product—–one with
higher µ—–will cause more harm, but harm will also be
influenced by the random term z(t). A higher σ yields
a more volatile review, namely, a series of experiments
from which the agency will find it harder to learn what
µ is.

Danger as the Cost of Approval. Observed harm is
a Markov process, and the agency can learn about µ

4 One may also interpret γij as the equilibrium market share upon
the product’s approval. The agency considers both safety and efficacy
in this model, but for simplicity, I assume that only danger is learned
and subject to uncertainty. The model can be adapted to the case
where γij is also learned, but the dynamics become quite complex
when the agency updates more than two processes, and the simpler
variant here adequately describes the review process.
5 I thank an anonymous reviewer for this suggestion and for the
clarifying language.
6 As Dixit (1993, 2–3) shows, the Wiener-process representation can
also be derived by taking limits toward zero on a discrete-time walk
of binary outcomes.

616



American Political Science Review Vol. 98, No. 4

in a simple Bayesian fashion based on the observed
history of X(t). Letting X(t) start arbitrarily at 0, then
it is normally distributed with mean µt and variance σ2t.
We assume that σ is the same across products but that µ
differs across them, according to a normal distribution
with mean m and variance s. For any product review of
length t and accumulated harm X(t) = x, the dual [x, t]
is a sufficient statistic for the history. In other words,
the agency knowing the entire clinical history is no
better off than if only [x, t] were revealed. Given these
sufficient statistics, Bayesian estimates of µ are

posterior mean ≡ Ext(µij ) = µ̂ijt =
(m/s) + (

x
/
σ2

ij

)
(1/s) + (

t
/
σ2

ij

) ,

(2a)

posterior variance ≡ S(t) = 1

(1/s) + (
t
/
σ2

ij

) . (2b)

Notice that

lim
t→∞ µ̂ijt = x

t
= µij and lim

t→∞ S(t) = 0. (3)

The posterior variance S(t) is the agency’s expected
uncertainty about the true value of µ. For this reason,
the value of delaying another moment (another dt) is
an increasing function of S(t).7

The agency’s goal during product review is to esti-
mate the danger of the product (µ). Although real-
world agencies have the option to recall a bad product
(or induce producers to recall it), the agency has no
such option here. The reason concerns reputation pro-
tection. Once a product has done sufficient harm to
warrant a recall, the agency cannot recover its repu-
tational losses via recall because observers will infer
that the agency has made a “bad” decision. Hence the
decision to approve a product is reputationally irre-
versible.8 The political cost of approval, then, is the
reputational loss that accrues to the agency from the
danger of the product. Upon product approval, then,
the agency loses µ, which can be learned only through
preapproval review.

The Political Demand for Products and the Approval
Payoff. One way for the agency to protect its rep-
utation would be to review submissions forever (or
reject them all). Yet there is often a political demand
for products makes this delay costly. Drug approval
provides a lucid example. In recent years the FDA has
appeared to be highly responsive to the demands of
(potential) drug consumers (Olson 1995; Vogel 1996).
Firms also attempt to place pressure on the agency for
quick approvals. Organized consumers and producers

7 See Chernoff (1968) and later, Jovanovic (1979), for a similar
modeling architecture. I rely throughout on the scale-invariance of
Brownian diffusions (Miroschnichenko 1975, 389–91).
8 Other functional forms are possible. If the agency’s reputation has
the character of a durable asset subject to erosion, then perhaps the
regulator’s utility is dependent not on µ, but on exp(µ). This would
render the stochastic process a “geometric” Brownian motion (Dixit
1993), but none of the substantive results of the model differ.

lobby the agency directly but also apply pressure indi-
rectly through elected politicians.

For this section I define the agency’s approval payoff
from approving the Nj -th product as a function only of
market attributes such as market size (disease preva-
lence), intensity of demand or “willingness to pay”
(disease severity), public salience, and the political or-
ganization of consumers. The payoff may be written

A = f (ψj , Lj , Nj ), (4)

Here Lj is the potential size of the market (in pharma-
ceutical settings, disease j ’s prevalence, or the number
of persons with disease j ).9 ψj is the political multiplier
of market j , a positive parameter.10 ψj can be inter-
preted as the expected number of citizens, for every
citizen in market j , who will apply pressure on the
agency or the politicians governing it. (In pharmaceu-
tical settings, this is the number of citizens per patient
with disease j . In some [but not all] cases, this pa-
rameter may capture the political impact of disease
severity). Nj is the number of marketed products that
have already entered market j (in a pharmaceutical
context, the number of available drugs that already
treat disease j ).

I postpone exact specification of A to the section on
early-entrant protection. For now, a crucial aspect of
equation (4) is that none of its constituent variables
is indexed by k. That is, I assume (for now) that the
approval payoff is unaffected by firm characteristics
such as contributions, reputation, and rents. In other
words, the agency is not “captured” in the sense that
its preferences do not direct it to treat some firms dif-
ferently from others per se.

The Agency’s Optimal Policy. The problem facing
the agency can be described as the optimal stopping of
the process µ̂t, with the following objective (suppress-
ing some subscripts):

max E−δ(tapp )
e

{
A − Eµ̂,t

∫ ∞

t
e−δ(y−t)µ∗(y, ω) dy

}
(5)

= Ee−δ(tapp ) {A − δ−1µ∗[tapp, ω]
}
,

where δ is the discount factor, tapp is a given approval
time, µ∗ is the agency’s estimate of danger at the opti-
mal stopping time (as given in Eqs. [2]), ω denotes an
elementary event in the probability space �, and y is a
variable of integration.

The regulator’s optimal policy is to divide the
space of possible outcomes into two regions (DeGroot
1970)—–a continuation region, where observed values

9 The constancy of Lj is a crucial assumption for the solution concept
of smooth pasting. For now, simply assume that a rapidly growing
disease has a high political multiplier. I also assume that indexation
across j offers no information about danger; clinical risk and indica-
tions are assumed independent. In practice, this is almost certainly
violated.
10 The parameter can exceed one because citizens other than those
directly afflicted by a disease—–relatives, friends, or other allies in
organized patient associations and the media—–may lobby for drug
approval.
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FIGURE 1. Simulated First Passage of the Danger Process µ̂(µ, t) through the Agency’s Approval
Barrier η(t)

of estimated danger [µ̂t] suggest waiting, and a termi-
nation region, where values of danger suggest “stop-
ping” the review process and approval of the pro-
duct. Figure 1 offers a sample division of the space.
Proposition 1 characterizes the agency’s best policy.

Proposition 1. For the approval problem character-
ized by (5), there exists an optimal stopping policy
characterized by the unique partitioning of [µ̂t, t] into a
continuation region C and a termination region T, such
that the approval barrier η∗(t) represents the boundary
of C, and the first passage of µ̂t through η∗(t) represents
the optimal approval of the product, where η∗(t) is

η∗(t) = δA − S(t)2

2σ2
Fµ̂µ̂[η(t), t]. (6)

Proof. Proofs of all propositions, lemmata, and corol-
laries are given in the Appendix. �

By Eq. (3), the limit of η∗(t) is δA, which µ̂t ap-
proaches from above. The fully discounted benefits of
approval (which have remained constant throughout
the decision) are equal to δA. Meanwhile, the cost of
approval is µ. In the limit, the estimated danger µ̂t
converges to the true danger µ, so that the product is
approved asymptotically if µ < δA. In finite time, of
course, the agency cannot make the decision in such
terms. There is always a value to waiting for more in-

formation, regardless of the agency’s attitude toward
risk.

Characteristics of the Approval Distribution. Let
G∗(t) be the approval distribution, or the probability
of approval at time t under the optimal policy. Propo-
sition 2 notes an interesting property of G∗(t): Even
when the agency cannot formally reject a product, some
products will still be “rejected” in the sense that they
will never be approved.

Proposition 2. De Facto Rejection without a Rejec-
tion Option. In expectation, a nonzero fraction of
products will never receive the agency’s approval, as
lim
t→∞ G∗(t) < 1.

In two ways, Proposition 2 coheres with actual reg-
ulatory behavior, for instance, the FDA. It is trivially
consistent, of course, with the fact that not all drug
submissions get approved. Yet it is also consistent with
the fact that the FDA never formally rejects a drug.
It simply deems a drug “not approvable,” and nothing
prevents the producing company from submitting more
data about the drug if it seeks approval at a later date
(GAO 1995).

Comparative statics are based on the following re-
sult.

Proposition 3. Let E[tapp | t∗app < ∞] be the ex-
pected approval time under the optimal policy. Then
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conditioned on approval, E[tapp | t∗app < ∞] is strictly de-
creasing in the payoff A.

From Proposition 3, any variable in which the ap-
proval payoff is increasing is also a variable in which
expected approval times are decreasing. Another pre-
diction of the learning model concerns the speed of
approval.

Proposition 4. The Scarcity of Quick Approval. Let
g∗(t) be the density of G∗(t). For any product i[tapp(i) <
∞] such that an optimal approval time exists, the ap-
proval hazard θ(t) = g∗(t)/[1 − G∗(t)] has the following
two properties:

(1) θ(t = 0) = 0,

(2) ∀t, t < θmax, lim
t→0

θ(t) = 0.

While the scarcity of quick review does not always
benefit larger, established firms, reflection suggests
that, given a distribution of firms—–existing and po-
tential entrants to a market—–tardy review will impose
heavier relative costs on smaller firms. Smaller firms are
usually newer ones, and delayed market entry can im-
pede a cash flow crucial to firm survival and cripple the
firm’s relationship with potential investors who seek
certainty over future product revenues. Larger firms
are better able to survive this sort of exposure.

THE VALUE OF FAMILIARITY: FIRM
EFFECTS AND FREQUENT SUBMISSIONS

The optimal stopping problem in Eq. (5) is repeated
numerous times over the lifetime of a regulatory policy.
In pharmaceutical regulation, for instance, the FDA
has since 1950 received over 10,000 new drug applica-
tions (NDAs) and has approved over 1,500 new chem-
ical entities, or drugs with new and complex molec-
ular structures. State public utility commissions face
repeated licensing applications for construction and
operation of power plants from the same utility compa-
nies. For hydropower plants the Federal Energy Reg-
ulatory Commission (FERC) conducts such reviews,
again repeatedly interacting with many companies. In
numerous industries, regulators receive new products
or license applications repeatedly from the same firms
or interests. It is useful, then, to consider the dynamics
of the agency’s approval policy when the problem in
Eq. (5) is repeated finitely.

If firms differ in the quality and care with which
they produce products, then it is reasonable to believe
that these differences are at least partially observable
by the agency. Anecdotal evidence coheres with this
intuition. The FDA employs hundreds of inspectors to
survey production processes at pharmaceutical plants,
and firms that are found in violation of federal regula-
tions are frequently revisited.11

To model the possibility of systematic firm differ-
ences in product quality or hazards, I introduce a firm-

11 For evidence on firm-specific updating in food regulation, see
Hinich and Staelin 1980.

specific error term to the danger variable. Whereas
before the specific danger of a product i(µi) was a
random draw from a normal “production distribution”
with mean m and variance s, I now respecify µi to
depend on an independent firm effect, ξk, which is dis-
tributed standard normal across firms. The danger of
any product is now

µ′
ik = µi + ξk, µi ∼ N(m, s), ξk ∼ N(0, 1).

Notice that the parameter m is still the central
tendency of the danger distribution, as E[µ′

ik] = m.
By the addition of independent variances, however,
Var[µ′

ik] = s + 1. The rational agency learns about ξk,
but this cannot be done within the confines of the prob-
lem in Eq. (5). It must be done across repetitions of the
stopping exercise, that is, across products.

Because the danger effect ξk is distributed normally
across firms, the agency can form a Bayesian estimate
ξ̂k[τ].12 Let τ be the “historical time” elapsed since the
first firm submitted the first product to the agency, and
let Nk[τ] be the number of products submitted by firm
k in historical time, with Mk[τ] the number of products
approved, and Nk – Mk the remainder that have not
(yet) been approved. Then the regulator’s best estimate
of ξk is a weighted sum of the danger estimates of any
firm’s submissions (approved and not approved), as
follows.

ξ̂k[τ] =



 1

Nk

∑
i∈[Nk∼Mk]

µ̂it


+


 1

Nk

∑
i∈[Mk]

µi




− m.

The agency’s uncertainty about a firm’s safety is the
posterior variance Varp[ξ̂k] of the estimated firm effect
ξ̂k[τ]. The prior variance of the firm effect ξk is 1, which
holds for all firms, but the posterior variance of the
estimated firm effect depends on the firm’s previous
submissions, so that that Varp[ξ̂k] is a decreasing func-
tion of Nk.

Varp[ξ̂k] =

1 +




Nk−Mk∑
i=0,k=K

r(tsub(ik))
s

+ Mk






−1

, (7)

where r(·) is the product-specific precision of
µ̂t[= s − S(t)], and tsub is the review time for all nonap-
proved products—–or the elapsed time from the sub-
mission of those products to the present time (τ).
When the regulator has had no experience with firm
k(Nk = 0, Mk = 0), Varp[ξ̂k] simply reduces to 1, or the
“prior” distribution of ξ̂k[τ]. Given some experience
with any firm (Nk > 1), then at the beginning of review

12 I note here that the agency’s estimate is not fully Bayesian, be-
cause once product review starts, the agency is assumed to learn
only about the product under consideration. Hence the agency is
not using all of the information available to it as review progresses;
knowledge about the firm’s other products and expectations about
present and future products in the “pipeline” are both fixed at the
beginning of review (see also Eq. [8]). This is an absolutely necessary
constraint for solution of the model, as relaxation would require that
the smooth pasting condition for solution satisfy a highly nonlinear
set of constraints. I am currently exploring ways to relax it.
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for any given product, the agency has better informa-
tion about the firm-specific danger effect ξK for firm
k = K. This fact forms the central intuition underlying
the advantage of familiarity.

Proposition 5. The Advantage of Familiarity. For
any set of firms k = 1, 2 . . . K such that ξ1 = ξ2 = · · · =
ξK, the following two statements hold:

(a) the expected review time E[tapp(ik) | ξk] conditioned
on the posterior variance Varp[ξ̂k] is a strictly de-
creasing function of Nk,

(b) the expected review time E[tapp(ik) | ξk] conditioned
upon the sample variance of the danger estimate (ξ̂k)
is decreasing in Nk unless (µNk+1 − µ̄Nk)

2 − σ̂2
µ̄,Nk

/

Nk > �(δA − m, s)1/N2
k, where σ̂2

µ̄,Nk
is the mean

square error of µ̄Nk.

Proposition 5 specifies a relationship between the
role of uncertainty about firms and drugs in the ap-
proval policy and the role of experience in reducing this
uncertainty. If we form general expectations over reg-
ulatory behavior, then this uncertainty is understood
in terms of the posterior variance of the danger esti-
mate, Varp[ξ̂k], and the relationship between expected
approval times and regulatory learning is monotonic.
If uncertainty is understood as the sample variance of
the danger estimate, then for most realizations of µik,
expected approval times will decrease with regulatory
learning.13 Extreme realizations of µik may increase
regulatory uncertainty. However, the left-hand side of
the inequality in Proposition 5(b) has zero expectation,
so these jumps in regulatory uncertainty will not hap-
pen often. And they are less likely to happen when Nk
is small.

Because the regulator’s uncertainty about a firm is a
generally decreasing function of regulatory experience
with that firm (Nk), so is uncertainty about the drug
under review, or Si(k)(t). Since the optimal policy re-
quires product approval when estimated danger µ̂t hits
the barrier η∗ (t) from above, an increase in familiarity
(Nk) pushes S(t) lower—–and thus the barrier higher—–
for all t > 0. Because the optimal stopping policy estab-
lished in Proposition 1 invokes risk-neutrality, this is a
strong result. Reduced prereview uncertainty about µik
translates into quicker approval times, conditioning on
the event of approval.14

13 I thank an anonymous reviewer for pointing out this alternative
notion of regulatory uncertainty.
14 An important caveat merits remark. As Dixit (1993, 58) warns,
it is not always the case that reduced uncertainty about a Wiener
process translates into a quicker optimal stopping time. Recall that
a crucial determinant of the agency’s uncertainty about µik is σ. As
Dixit adroitly notes, increases in σ may actually reduce the stopping
time because σ represents the volatility of X(t) and a more volatile
process may more quickly reach the barrier. Proposition 4 rests on a
different result and is robust to Dixit’s cautionary note. Recall that
σ does not differ across products but that the posterior variance of
εk does. At the beginning of any product review (t = 0), the agency
knows the “prior” variance of µ by S(0) = {s + Varp [ξk]}−1. In finite
time, S(t) is always an increasing function of Varp [ξk], independent
of the value of σ.

Notice that the result in Proposition 5 makes no
assumptions about how attributes of firms might affect
the approval payoff. The only differences that prevail
among firms are captured in Nk, the number of sub-
missions. Over any given period of time, larger firms
will submit more products than smaller ones, and this
difference alone is sufficient to yield lower expected ap-
proval times. Hence there is protection—–smaller and
newer firms will, in expectation, wait longer to enter
any given market—–without capture.

The second result is more powerful. Because the
result is conditioned on the firm-specific danger value
ξ̂k, Proposition 5 raises the possibility that firms with
many submissions and with positive ξ̂k (or below-
average safety reputation) may actually receive quicker
reviews, conditioning on the event that a given product
is approved. In other words the advantage of familiarity
outweighs poor firm reputation, to a point. I formalize
this in Corollary 5.1.

Corollary 5.1. Consider two products with identical
experimental histories and identical approval payoffs
but submitted by different firms: one (k = k0) with no
previous submissions, the other (k = kB) with a “bad
reputation” (ξ̂kB > 0) but positive familiarity (NkB > 0).
Let tstop be the approval time for the drug submitted by
the unknown firm (k0). Then when

ξ̂kB ≤ σ2
i + ststop

σ2
i

[Sk0 (tstop)2 − SkB(tstop)2]

or (conceptually) when drugs receive sufficiently “early
approval” or the bad firm has a sufficiently low firm
danger estimate low ξ̂kB), the product submitted by the
bad but familiar firm receives quicker approval than the
product submitted by the unknown firm.

One example of a perfect (one-for-one) tradeoff be-
tween the disadvantage of a bad reputation and the
advantage of familiarity appears in Figure 2. Here a bad
reputation—–higher values of ξ̂kB—–boost the starting
point of the process µ̂t from m to m + ξ̂kB and slow
approval. Yet to a limited extent, familiarity advan-
tages can compensate and even outweigh these effects.
Even as a bad reputation moves the process µ̂t away
from the barrier, familiarity shifts the barrier back to-
ward the process.15

EARLY–ENTRANT PROTECTION

Another characteristic of large firms is greater capital-
ization and an ability to enter new market niches at
lower cost. The first new entities for AIDS, acute coro-
nary syndrome, and erectile dysfunction were all devel-
oped by large companies (e.g., Burroughs–Wellcome

15 If product submission were costless, then rational firms might
attempt to take advantage of this familiarity result and load the
regulator with frivolous submissions to increase their familiarity with
the regulator. As DiMasi et al. (1991) show, however, pharmaceutical
product development is enormously expensive even before the reg-
ulatory approval stage, so even if firm submissions were endogenous
to the model, it is doubtful that this would be an equilibrium policy
under any reasonable submission cost parameters.
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FIGURE 2. Trade Off between Firm Danger Reputation and Regulatory Familiarity

with AZT). DiMasi et al. (1995, 213) present evidence
consistent with the proposition that larger firms enter
new markets earlier, as their drugs are more likely to
receive FDA priority status and their per-drug sales
are higher than those of small firms (see also Dranove
and Meltzer 1994, 409). If earlier drugs for a disease
receive quicker approvals, then larger and older firms
benefit disproportionately if in fact they enter these
new markets sooner than smaller firms do.

In this section I adjust the agency’s approval func-
tion to consider the effects of the political demand of
consumers on firm advantages. I focus on diseases as
“market niches” because they play a crucial role in
the pharmaceutical industry. In essence, there is no
single “market” for pharmaceuticals; there are, rather,
numerous markets bounded in size by the diseased
population. This section of the argument is therefore
tailored much more specifically to the case of drug reg-
ulation. (I consider other possible applications below.)

In the past two decades, the FDA has shown con-
siderable responsiveness to pressure from organized
patients and disease-specific advocacy groups.16 The
most visible case of FDA reaction to these forces was
the quickening of drug approvals for AIDS drugs in the
1980s and early 1990s (Epstein 1996). More generally,
as Olson (1995, 404) argues, “From the FDA’s perspec-
tive, the threat of adverse feedback from consumers

16 Some of these are connected to the pharmaceutical industry; the
vast majority are not.

seems to dominate the complaints of the drug industry.”
In this section, I specify the agency’s approval payoff as
a function of the political organizations of consumers
(and of producers). I also provide a functional form
for the effect of past and future drugs on the approval
payoff for the present drug. The approval payoff may
be defined intuitively as follows.

For any drug i, which treats disease j and is submitted
by firm k, the agency’s payoff from approving the drug
(denoted A) is equivalent to the sum of all individuals
with disease j who have no available pharmaceutical al-
ternatives and whom drug i would be expected to cure,
where each consumer is weighted by their relative political
organization (a political multiplier), and where the drug
itself is weighted by the firm’s political clout.

Before translating this principle into an equation for
the approval payoff, I pause to note several features
of this concept. I assume that the political demand for
a drug differs from the economic demand for it in an
important way. Political demand is greater for those
individuals who have no therapeutic alternatives for
their disease. In other words, if individuals are taking a
drug that ameliorates their condition in some way, then
they have less political demand for any more drugs for
their disease, even if these drugs would improve their
condition or would be available at a lower cost. In other
words, the model rests on the assumption that, once
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individuals have adopted a drug, their contribution to
the political demand pool drops to zero.17

In short, while individuals as consumers may max-
imize their health status and care about price, indi-
viduals as citizens satisfice with respect to the agency.
The reason, I suggest, is that citizens have “traceabil-
ity” constraints (Arnold 1990). They do not blame the
agency for the high price of drugs—–even if it is apparent
that the regulatory process boosts drug prices. If the
price of a drug is too high, or if citizens are weakly
satisfied with a drug they are taking, they blame not
the agency, but the producers.18

The Effect of Past and Future Drugs

Because political demand is a function primarily of
those patients without therapeutic alternatives, the pay-
off is not a simple function of the curing power γi of
the drug submitted. The reason is that drugs may al-
ready exist to treat disease j , and forthcoming drugs
in the “pipeline” may also be expected to treat the
disease. Existing drugs influence the approval payoff
in the following way. If no drug has previously been
approved for disease j , the total expected curing of
drug i is γij Lj . If one drug (“drug 1”) has already
been approved, then the expected curing of drug 2
would be γ2j Lj × (1 − γ1j ). So for any series of drugs
i = 1, 2, . . . , N, the total curing of the Nth drug, given
past approvals, is

γNj Lj × (1 − γ1j ) × (1 − γ2j ) × · · · × (1 − γN−1,j )

= Lj {γNj }
N−1,j∏

i=0

(1 − γij ).

Of course, pharmaceutical firms constantly intro-
duce new drugs, and the rational agency will take into
account this stream of future submissions. If the agency
expects a sufficient number of high-quality drugs to be
submitted for disease j in the very near future, then
the approval payoff for the current drug is lower. To
incorporate into the approval payoff the set of drugs

17 One can relax this assumption by assuming that the political de-
mand contribution drops by a factor of ζ, 0 < ζ≤ 1. The general
results here are unaffected by this transformation. I opt for the sim-
pler variant here. While this assumption may seem constraining, it
characterizes the politics of pharmaceutical regulation much better
than any alternative. There are few documented cases of citizens
or their representatives lobbying the FDA for quick approval of
drugs that are cheaper for a given disease than existing drugs. More
significant, there are many more cases in which new, better, and
cheaper drugs are submitted to the FDA and in which no lobbying
for approval by citizens occurs. Also, I am unaware of any instance in
which the FDA has cited the price-competition value of a new drug
in approving or rejecting it.
18 The story of AIDS drugs is instructive and supports this assump-
tion. AIDS protesters swamped FDA headquarters when the drug
ddI was under review (Hilts 2003). Accordingly, as the model here
predicts, the agency approved the drug quickly. Yet when AIDS
patients were distraught at the high initial price of AZT and other
AIDS drugs, they protested not at the FDA, but on Wall Street, where
ACT-UP members chained themselves to the floor of the New York
Stock Exchange. Burroughs–Wellcome subsequently cut the price of
AZT from $8,000 to $6,400 (Epstein 1996).

that will be submitted and may be approved in the
future, define χ as the time that the Nth drug (the one
currently under consideration) is submitted. Let Eχ be
the expectation operator computed at time χ. Let cij
be the mean of the curing distribution f (γij ). Then the
payoff for the Nth drug (AN) is

AN = Lj ψj ρk


γNj

Nj −1∏
i=0

(1 − γij )




×



Nmax(λ)∏
i=Nj +1

[
1 − e−δ(Eχ[tsub(i)(λ)]+Eχ[t∗app(i)])cij G∗

χ(Ai, cij )
].

(8)

The second term in brackets on the right-hand side
is called the pipeline value and will be denoted Aπ.
The pipeline value is the expected fraction of present
prevalence that remains after the curing of the full
stream of future drugs, weighted by the probability of
their approval under the optimal policy, and each fully
discounted. The pipeline value can be zero only if the
agency expects a cure-all to be approved with probabil-
ity 1 immediately upon the submission of the drug. By
Proposition 2, this event has negligible probability.

I also allow the approval payoff to be a function
of the political influence of the firm submitting the
drug, parameterized as ρk. (The first four parameters
in Eq. (8) are assumed positive.) This parameter em-
beds the idea that better organized interests will re-
ceive preferential treatment. Capture theory may not
always imply such a relationship, but Stigler’s opening
epigraph certainly does.

Intuitively, “early-entrant protection” (EEP) is the
systematic advantage in expected time to approval for
the first drugs approved for a disease relative to drugs
developed later. The premise that drug consumption
“removes” patients from politics is sufficient to demon-
strate two forms of “protection” for the manufacturers
that produce the first drugs for any disease.

Strong early-entrant protection: Expected approval
times are a strictly increasing function of the order
of entry, such that E[tapp(i=N+1)] > E[tapp(N)] for
all N.

Weak early-entrant protection: One drug has a lower
expected approval time than all subsequent drugs.

Analysis of the model suggests that early entrant pro-
tection depends critically upon how the curing power
of therapies unfolds over a sequence of drugs targeting
a given disease. An instructive result comes when we
assume that this unfolding is stationary, that is, it has
constant expectation or mean.

Proposition 6. Concave Early-Entrant Protection Un-
der a Stationary Quality Distribution. For any dis-
ease j = J , consider a sequence of disease-specific drugs
i = 1, . . . Nj . Then γi,j is the curing probability for drug
i for disease j . Let f (γ) be a stationary curing distri-
bution for any disease, such that E[γi] = g for all i ∈ J .
Then strong early entrant protection holds, such that
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FIGURE 3. Early Entrant Protection as a Function of Firm Political Clout

E[tapp(N+1)] > E[tapp(N)] for all i. Moreover, the degree
of protection —– the approval time advantage of earlier
as opposed to later entrants—–is concave in Nj .

Concavity is far from trivial. It means not only that
the first entrant to any disease niche receives the quick-
est review, but also that the second entrant has the largest
expected delay relative to the previous entrant. In other
words, the degree of protection given to the first entrant
is the greatest.

Possible Interactions between Capture and Noncap-
ture Factors: The Effect of Firm Clout. The case of
stationarity is instructive for several reasons. The de-
gree of early-entrant protection that a firm receives is
an increasing function of all of the other parameters
of the approval payoff. In particular, firm clout (ρk)
boosts the effect of early entrant protection, and vice
versa. This result is depicted in Figure 3, where the con-
cavity of the protection function also appears. Where
large firms have political rents and can influence the
agency, it is a genuine advantage for such firms to enter
new markets early, as their competitors will have dis-
advantages both in influence and in reduced “political
demand” for new drugs.

The Generality of Early-Entrant Protection. More
generally, for any two drugs i = N and N + 1 with

identical levels of danger (µN = µN+1), the expected
approval time for the Nth drug is always shorter unless
the (N + 1)th offers an improvement in curing power.

Proposition 7. Given two drugs with identical danger
(µN = µN+1), then unless the (N + 1)th drug improves
upon the curing of the Nth, EEP must hold. The inverse
is not true.

Early-Entrant Protection When Drugs Improve Over
Time. To assume the stationarity of f (γij ) is restric-
tive; it implies that the curing power of drugs does
not improve as new ones are developed. It is useful,
then, to consider the case of stochastic improvement,
where newer drugs will be expected to have superior
curative power relative to older ones, a process driven
by technological change.

Once we admit stochastic improvement in f (γij ),
then early-entrant protection does not hold for all se-
quences of products. Intuitively, if the regulator expects
the first drug for any disease to cure 10% of patients
and firmly expects the second drug to cure 90%, the
agency will consistently find it worthwhile to approve
the second more quickly. A generalizable result, then,
requires limits on the path of γij . A realistic assumption
is concave improvement, which would reflect decreas-
ing marginal returns to technology or R&D.
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Proposition 8. Early-Entrant Protection for Concave
Improvement Functions Over the Curing Distribu-
tion. Let the stochastic improvement function satisfy
(1) dE[γ]/dN > 0 and (2) d2E[γ]/dN2 < 0, for all N.
Then there are at least two forms of early-entrant pro-
tection.

(1) For γ1 sufficiently high, there is strong early-entrant
protection.

(2) For any γ1 < 1, and with maximal improvement
consistent with concavity, there is always weak early-
entrant protection, or protection for some set of
drugs submitted and approved early in the sequence.

Assuming decreasing marginal returns to technology,
simple restrictions on the improvement of the second
drug over the first (or the third drug over the sec-
ond) are sufficient to derive shorter expected review
times for the first drug or drugs approved, relative to
all other drugs. Proposition 8 shows that early-entrant
protection holds even when the regulator expects later
entrants to a market niche to offer quality improve-
ments.

Corollaries: First Drugs, Innovation, and
Product Diversity

A number of other testable statements about early-
entrant protection (EEP) can be advanced here.

Corollary 8.1. The greater the quality of the first
product approved, the greater the likelihood of EEP for
product 1 relative to the sequence of following products.

Corollary 8.2. For any sequence of products, the like-
lihood and severity of EEP are decreasing in the product
innovation rate λj .

Corollary 8.3. For any firm, the likelihood of receiv-
ing EEP for at least one product is increasing in the
diversity of market niches targeted.

Corollary 8.1 follows rather straightforwardly from
the specification of the approval payoff in Eq. (8). If,
for instance, the first drug to be produced and approved
for a given disease cures 90% of the prevalent suffer-
ers, the agency will not approve any drug as quickly
given the drastic reduction in marginal curing for later
drugs.

The Effect of Product Innovation. Corollary 8.2
suggests that the potentially distortionary effects of
early-entrant protection will be mitigated when the
submission rate is high. The reason is that, when the
first drug (or first few drugs) for any disease is being
considered, the agency will discount their marginal
curing value by the expectation that other cures are
likely to be submitted soon. One policy implication is
that policy instruments that enhance the climate for
product innovation may, ceteris paribus, reduce the
advantage of early entrants in the regulatory process.

The Corollary Advantage of Diversity. If larger firms
have greater product diversification (products in more

markets), then Corollary 8.3 points to another ad-
vantage for them. All else equal, firms with drugs
for more markets have a greater likelihood of receiv-
ing protection in an least one market niche from the
regulator. Smaller drug firms tend to concentrate on
one or a few diseases. Unless they enter these niches
quickly, their relative regulatory disadvantages will be
severe.

Other Approval Processes Where Early-Entrant Pro-
tection May Apply. While I have tailored the dis-
cussion of early-entrant protection to pharmaceutical
markets, it is quite possible that the model here (with
elaboration or revision) could apply in other situations.
Consider the licensing of alcohol service in a small
town where there is consumer demand for just two
types of establishments: an Italian restaurant (wine and
grappa) and a microbrewery (beer). Suppose that local
political demand for the types is equal and that, over a
relevant period of time, all applications for an alcohol
license offer products with identical expected quality
(revenues) and identical expected hazards (loud and
drunken patrons). If the township licensing regulator
has discretion over licensing decisions, early-entrant
protection dynamics suggest that the first microbrew-
ery to apply for an alcohol license will receive more
favorable treatment than either (a) the tenth Italian
restaurant to apply or (b) the second microbrewery
to apply (once the first microbrewery has been ap-
proved). The reason, in the logic of early-entrant pro-
tection, is that local political demand for additional
alcohol licenses will have been nearly satiated by the
appearance of a few Italian restaurants and one micro-
brewery.

Space does not permit a careful analysis of other
applications, but allow me to trace (very speculatively)
the following possibilities: (1) Might a transportation
regulator approve the first proposed flight route from
Chicago to Peoria more likely and more quickly than
(a) the tenth route from Chicago to Washington or (b)
the second route from Chicago to Peoria? (2) Suppose
that in a three-year period a political science journal
has published 10 political theory articles but not a single
article on international relations. Might a journal editor
(who is facing increasing criticism from his or her col-
leagues in security studies) approve the next decent IR
submission with greater likelihood and rapidity than
(a) the equally good “eleventh” submission in political
theory or (b) the third or fourth new IR submission,
once the first IR submission in three years has been
published?

THE PROBLEM OF ENDOGENOUS
SUBMISSIONS

The principal constraint of this model is its assump-
tion that firm submissions are exogenous. Endogenous
submissions may pose two potential problems. First,
the regulator may face trivial uncertainty if the act of
regulatory submission is itself a signal that completely
reveals product quality or hazards. If the regulator’s
standards were high enough and firms submitted only
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“good” products submitted in equilibrium, then there
would be little point in extended regulatory review. So
one question is: Would regulatory uncertainty disap-
pear or substantially wane in a strategic setting? Sec-
ond, even if considerable uncertainty remained, the
regulator would undoubtedly know that some sorts of
submissions were unlikely, and hence the distribution
of product hazards for observed submissions would
likely be truncated or characterized by an upper bound.
Do the results here hold for product hazard distribu-
tions of this character?

The Persistence of Regulatory Uncertainty

As long as firms retain some private information about
the quality or hazards associated with their product,
significant regulatory uncertainty would persist in a
strategic setting with endogenous product submissions.
A fuller analysis of this question lies beyond the present
paper (see Carpenter and Ting 2004). The essential in-
tuitive point is that, in any game with endogenous sub-
missions, there exists no semiseparating equilibrium
in which only types above some threshold submit and
the regulator approves all submissions; the regulatory
process causes a partial “pooling” of products. (That
is, there are not equilibria where low-quality products
are always abandoned, and only good products are
submitted, and in which the regulator uses this infor-
mation to relax the regulatory process.)19 The reason
is that, if by dint of high regulatory standards only
good products were submitted, then the regulatory
agency would find it worthwhile to shortcut review
and approve all products immediately. But this move
would induce firms to submit “bad” products, and so
the regulator must randomize review and approval to
a degree. This means that a substantial portion of the
applicant pool will in fact be below the regulator’s
standards, even though the regulator can never de-
termine with absolute certainty which products these
are. So while the act of submission provides some in-
formation to the regulator, considerable uncertainty
remains.20

Extension to “Reduced Form” Truncated
Prior Distributions

Do the results hold when prior distribution is truncated
(i.e., certain submissions are not possible)? Briefly, the
answer is yes. Consider first the advantage of regula-
tory familiarity. Recalling that the prior distribution
of µ̂t is normal, we can represent the impossibility of
certain submissions by an upper-truncated normal dis-
tribution. The question is then whether the agency can
update on such a distribution in the way it does with

19 I thank an anonymous reviewer for this language.
20 In the semiseparating equilibrium of Carpenter and Ting (2004),
the firm mixes between submitting and abandoning. The regulator
sets approval so that the “low” type is made indifferent between
submitting and withdrawing. A similar semiseparating equilibrium
occurs in many crisis bargaining games studied in international rela-
tions (Schultz 1998).

the normal distribution in Proposition 5. As with the
normal distribution, the posterior variance of a trun-
cated normal distribution is also decreasing in sample
size, hence a result much like Proposition 5 would ex-
tend to the case of a truncated prior as well. Second,
note that none of the early-entrant protection results
depend on the distribution of µ̂t or ξ̂k, so these results
extend.

Theoretical and Empirical Reasons for
Decision-Theoretic Specification

Finally, a decision-theoretic analysis of regulatory re-
view has clear analytic value on its own. First, consid-
erable contextual and informational complexity can be
added to the model, richness that must be sacrificed
in a tractable analytic game. Specifically, a tractable
game-theoretic model of approval regulation admits
of only two product types, allows no differentiation
between quality and hazards, permits no regulatory
review of evidence, and allows for no temporal dis-
counting or dynamics, no role for organized consumers,
no repeated interaction between firms and regula-
tors, and no possible entry-order effects (Carpenter
and Ting 2004). It is for this reason that a decision-
theoretic model, with its own limitations, is uniquely
useful in understanding many dynamics that a game-
theoretic model with endogenous submissions must
sacrifice. A second reason is empirical; regulatory re-
view happens 100% of the time a product is submitted,
and observers note relatively high rejection rates of
drugs submitted (this is impossible to know with cer-
tainty, but the GAO [1995] estimates that 40% to 50%
of new drug applications are rejected at the FDA).
We can also document facts consistent with consid-
erable uncertainty in agencies that make such deci-
sions (reviewers wanting more time, and asking for
more information, and split votes on advisory com-
mittees). While game-theoretic analysis would comple-
ment this paper, then, it remains true that the combina-
tion of game- and decision-theoretic analysis (at least at
present) exceeds the value of game-theoretic analysis
alone.

BOUNDED RATIONALITY: ADAPTATION,
PLACEBOS, AND FORGETTING BY
TURNOVER

The model developed here assumes a good deal of
rationality; the agency behaves as if it were solving
a complex dynamic programming problem, it con-
ducts real-time Bayesian updating on a continuous
stochastic process, and it knows and uses both past
regulatory submissions and (expected properties of)
future regulatory submissions. It is worth reflecting,
then, on whether the results derived here would hold
under the more realistic scenario of a boundedly
rational regulator. While each of the following ideas
would require separate papers to elaborate, there are
at least three ways that such bounded rationality could
be approached.
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A first possibility is that the real-world agency’s
learning is not perfectly Bayesian but rather “adaptive”
(e.g., Bendor, Mookherjee, and Ray 2001). Instead of
using Bayes’ rule to update firm histories, for instance,
the regulator might keep a running tally of experience
with a firm in which only sufficiently “bad” interactions
enter into memory. Or the regulator might be subject to
“confirmatory bias” (Rabin and Schrag 1999), whereby
the first interaction with the firm strongly conditions
inference from subsequent interactions. The key to fa-
miliarity advantages is that, as long as repeated experi-
ence increases (even slightly) the precision with which
the regulator can estimate firm danger, the familiar-
ity result can still obtain. Hence the familiarity result
probably extends to cases of non-Bayesian updating
but may not hold under confirmatory bias.

Second, patients lobbying the agency may be sub-
ject to “placebo learning,” that is, overestimation of
the quality of a product by virtue of placebo effects.
FDA approval is sometimes influenced by the emotive
appeals of patients who testify that the drug worked
for them and that they had no other option. Even if
the drug is effective, some of these patients’ responses
may be placebo-related. If the agency incorporates
such lobbying without discounting for this possibility, it
may overestimate the product quality (curing power)
and underestimate product hazards. In other words,
bounded rationality on the part of organized interests
may translate to bounded rationality on the part of the
regulator.

Third, personnel turnover may create a regulator
with imperfect memory. The model here assumes a
regulator with continuous and perfect memory; the
regulator remembers not only the entire history of
the present product review, but also the history of
each firm that submits. In real-world settings, mem-
ory limitations strongly influence optimization deci-
sions (Mullainathan 2002). In reality, new bureaucratic
officials arrive to agencies without built-in memories
(the histories and cases must be learned), and officials
who depart the agency take valuable firm-specific and
case-specific information with them (which may not
be immediately or costlessly transferable to the offi-
cials who replace them). Given the pervasiveness of
turnover in government workforces, turnover as “orga-
nizational memory” becomes a crucial policy issue. As
a conjecture, it is quite possible that large firms whose
reputations are well known to the general public and
scientific community may suffer less when turnover is
high, because their external reputations “compensate”
or “substitute” at some level for the regulator’s loss of
information. Hence organizational memory might in
fact exacerbate large-firm and older-firm advantage in
regulatory settings.

CONCLUSION AND EMPIRICAL
IMPLICATIONS

Conventional wisdom follows Stigler in arguing that,
upon observing distinct policy or regulatory advan-
tages for apparently wealthy or well-organized firms,

one should infer that capture, rent-seeking, or some
other form of distributive politics is necessarily at play.
Yet Stigler was wrong: evidence of policy advantage is
quite insufficient for a conclusion supportive of capture
theory. A neutral learning regulator motivated only
by reputation protection and constrained by political
responsiveness to consumers would also provide ad-
vantages to larger and older firms.

While it generates some results that are observation-
ally equivalent to those of capture theory, the reputa-
tion and learning model also has some divergent empir-
ical implications. First, Proposition 5 and Corollary 5.1
suggest that observed large-firm advantage in approval
regulation should attenuate (perhaps entirely) once
previous submissions are controlled for. Evidence for a
reduced apparent firm size effect, controlling for famil-
iarity, would be evidence against the capture account
and evidence in favor of the model here.21 Second,
the model predicts that firm reputations for safety will
decisively influence regulatory outcomes; capture the-
ory does not offer such a prediction. Third, familiarity
effects should be conditioned both on the length of
the review (see Corollary 5.1) and on features of the
regulatory bureaucracy itself (the institutional memory
of the organization, for example).

While capture theory might also predict early-
entrant advantage in approval regulation, there are
numerous predictions made by the model for which
capture theory cannot account. Early entrant protec-
tion should be conditioned not on the political orga-
nization of producers, as capture theory might predict,
but on the political organization of consumers. Hence
the model here uniquely predicts interaction effects
between order of entry and consumer political organi-
zation. In addition, the corollaries of Proposition 8—
–the importance of the quality of the first product on
the market and the regulators’ adaptation toward the
pipeline of future products—–would also be inconsistent
with capture theory.

Recent studies have arrived at empirical results sup-
portive of the reputation and learning perspective
advanced here. Olson (1997) interprets firm charac-
teristics as potential signals to uncertain regulators
about unobserved product quality. The formalization
here generally supports Olson’s argument and, con-
versely, Olson’s results provide empirical support for
this model. Kyle’s (2002) results also provide support
for early-entrant protection and familiarity advantages.
The regulatory advantage of familiarity may best be in-
terpreted not as political “coziness” between regulator
and industry (Bartel and Thomas 1987; Stigler 1975,
162–63), but as the result of repeated observation of a
sequence of firm products by a rational agency.

Familiarity advantages can hold even when an uncer-
tain regulator encounters firms with a below-average
safety record. While not all such firms have regulatory

21 The proper framework for test would be to assess the coefficient
on firm size in a duration model of product approval times, and to
examine whether the estimated marginal effects of firm size decline in
the presence of controls for regulatory familiarity. Work is under way
in this direction. I thank an anonymous reviewer for this suggestion.
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advantages, some of them will still receive quicker ap-
provals when their products are accepted. As a result,
the model here departs in some respects from Olson’s
logic; familiarity advantages are distinct from (though
not independent of) firm-specific quality differentials.
A test distinguishing between Olson’s predictions and
mine would require data on the actual quality of a pro-
duct. The model here predicts that, even controlling
for product quality, a familiarity effect should hold such
that a firm’s expected approval times should be decrea-
sing in the number of previous product submissions.

The reputation and learning model may also explain
patterns of large-firm advantage that prevail in areas
of regulation outside of the pharmaceutical industry.
These patterns include quicker license approvals for
older and more established firms in the electricity in-
dustry and quicker permit granting for and quicker
disposition of litigation for older and larger firms in
the enforcement of environmental regulation (Gordon
1999; Spence 1999).

In conclusion, the reputation and learning model
suggests that even an apparently “neutral” regulatory
regime can bequeath systematic advantages to larger,
more established firms. This result should give pause
to students of institutional design who believe that
rigorous political insulation of an agency can create
an even playing field for all firms large and small. In
this light, the model is similar to other formal efforts
demonstrating the impossibility of neutral administra-
tive arrangements (Hammond and Thomas 1989).

The lesson for students of political economy is one
of proper inference. Observed advantages for larger
and older firms in regulation may say little or nothing
about politics because they may exist for many reasons,
some related to capture and some not. Whether or not
capture prevails in a given industry, the advantage of
familiarity and early-entrant protection may interact
with capture to magnify large-firm advantage in regu-
lated industries.

APPENDIX: PROOFS

Proof of Proposition 122

The existence of an optimum for (5) has been shown else-
where (see, for example, Shepp 1969 and Miroschnichenko
1975). Here I show that the optimal barrier is Eq. (7). The
solution to Eq. (5) must satisfy the functional (Bellman)
equation,

δF(µ̂, t) = {Eµ̂,tF(µ̂(t + dt)) − F(µ̂(t))} + o(dt), (A1)

where o(dt) represents vanishing terms of order higher than
t. Dropping higher-order terms and using Ito’s lemma,

δF(µ̂, t) = {Eµ̂,t[F(µ̂(t + dt)) − F(µ̂)]}

= E(dF) = Ft(µ̂, t) + 1
2

S(t)2

σ2
Fµ̂µ̂(µ̂, t) (A2)

⇒ Ft(µ̂, t) + S(t)2

2σ2
Fµ̂µ̂(µ̂, t) − δF(µ̂, t) = 0.

22 A longer version of Proposition 1 appears in Carpenter 2002; I
repeat it here for clarity and ease of reference.

Let [η(t), t] be the boundary of the continuation region, where
the following conditions hold.

F(µ̂, t) = A − (µ∗/δ) (value matching),
d
dt

F(µ̂, t) = Ft(µ̂, t) = d
dt

[A − (µ∗/δ)] (smooth pasting).

The smooth pasting condition requires identity of the time
derivatives for the value function (Ft(µ̂, t)) and the stopping
payoff, hence d[A − (µ∗/δ)]/dt = 0 ⇒ Ft(µ̂, t) = 0. Applying
these conditions to Eq. (A2) gives

S(t)2

2σ2
Fµ̂µ̂(µ̂, t) − δ[A − (µ/δ)] = 0. (A3)

Evaluating (A3) at µ̂ = η(t) yields the optimal rule. �

Proof of Proposition 2

For simplicity, fix the barrier η at δA (a process that exceeds
δA infinitely often will also exceed every point below δA
infinitely often). Then the probability of the process dropping
below η is a function of the cumulative normal distribution:

Pr[µ̂∗
t ≤ η| µ(0) = m] = �

{
(η− m) − (µ − δA)t

σ
√

t

}
.

I now characterize limt→∞ �t. As long as µ < δA,23 the argu-
ment of the cumulative normal integral tends to infinity [the
numerator increases at a rate of order t; the denominator, at a
rate of order sqrt (t)] and the probability that the process re-
mains above the barrier asymptotically [=1 − �∞(·)] is zero.
If µ > δA, however, the argument in �∞(·) runs to negative
infinity. Then the asymptotic probability of the process resting
below the barrier is zero, and the probability of infinite review
is strictly positive. �

Proof of Proposition 3

By Proposition 2, analysis must be restricted to the case
µ < δA, as the case µ > δA yields infinite expectation. Given
this assumption and the scale invariance of Brownian diffu-
sions, the first-passage time can be represented as an inverse
Gaussian form (Folks and Chikkara 1979), with moment gen-
erating function

�G∗(t)[ζ] = exp

[
ν(δA − µ)

{
1 −

√
1 − 2ζ(δA − µ)−2

ν

}]

(A4)

where ν is the scale parameter of the first-passage time dis-
tribution (the variance is positive and finite for µ < δA), and
index variable ζ. The expected approval time can be calcu-
lated from the first moment as (δA − µ)−1. �

Proof of Proposition 4

Result (1) obtains by the property of g∗(t) such that g∗(0) = 0.
Result (2) follows from the unique mode of hazard at θmax

G > 0
(Folks and Chikkhara 1979).

23 The case where δA equals µ is more complicated. Here the proba-
bility of eventual approval is one, but counterintuitively, the expected
approval time is infinite due to the positive probability of infinite
sojourns of µ̂t infinitesimally close to the barrier. See Dixit 1993 for
more discussion.
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Proposition 5: The Advantage of Familiarity

(a) E[tapp | ξk] conditioned on the posterior variance Varp[ξ̂k]
is a strictly decreasing function of Nk.

Proof. To make the agency’s policy feasible, all estimates
on the posterior distribution of ξk are fixed at the beginning
of the review for any drug, otherwise parameters of the de-
cision process (in particular, s) would vary over the course
of the review. This assumption makes use of the following
lemma.

Lemma 1. Any tsub(ik) is a optional stopping time for the
process µ̂t, and by the right-continuity of the filtration �t, any
tsub(ik) is progressively measurable with respect to the σ-field
�tsub(ik) , as is the stopped process µ̂tsub(ik) .

Proof. See Karatzas and Shreve 1991, Propositions 2.3 and
2.18.

Lemma 1 establishes the feasibility of the agency “stop-
ping” at any point in time and retrieving all current estimates
of µ̂tfor all drugs, whether approved or not.

The posterior variance of the estimated firm effect is, from
Eq. (7),

Varp[ξ̂k] =
[

1 +
{

Nk−Mk∑
i=0,k=K

r(tsub(ik))
s

+ Mk

}]−1

.

This formula presupposes the progressive measurability
of tsub(ik). By inspection, Varp[ξ̂k] is strictly decreasing in Nk.
Then the agency’s submission-adjusted uncertainty over the
danger of drug i is S(ti | ξk) = ({1/[s + Varp(ξk)]} + (ti/σ

2
i ))−1,

which is strictly increasing in Varp[ξ̂k]. �

(b) E[tapp(ik) | ξk] conditioned on the sample variance of the
danger estimate (ξ̂k) is decreasing in Nk unless {[(µNk+1 −
µ̄Nk)2 − σ̂2

µ̄,Nk
]/Nk} > (1/N2

k), where σ̂2
µ̄,Nk

is the mean square
error of µ̄Nk.

Proof. The sample variance of the estimator ξ̂k is Samp
Var(ξ̂) = [

∑Nk
i=0(ξ̂i − ξ̄)2]/(Nk − 1). From the Nth product to

the (N + 1)th product, the differential movement of this
sample variance is

(ξ̂Nk+1 − ξ̄)2(Nk − 1) −∑Nk
i=1(ξ̂i − ξ̄)2

Nk(Nk − 1)

= (µ̂Nk+1 − µ̄ik)2(Nk − 1) −∑Nk
i=1(µ̂ik − µ̄Nk)2

Nk(Nk − 1)

= (µ̂Nk+1 − µ̄ik)2 − σ̂2
µ̄,Nk

Nk
.

The agency’s uncertainty increases only when this differential
exceeds the expected reduction of posterior variance, which
obeys d/dNk Varp[ξ̂k] > �(δA − m, s)N−2

k . �

Proof of Corollary 5.1

We consider the case where the product submitted by a bad
firm (NkB > 0, ξ̂kB > 0) and one submitted by an unknown
firm (Nk0 = 0 ⇒ ξ̂k0 = 0) have identical danger and generate
identical experimental histories for the danger variable X, or

µ
ξ>0
1,j ,kB ≡ µ

ξ=0
2,j ,k0

and

H
(
X1,j ,kB(t)

∣∣µξ>0
1,j ,kB

) ≡ H
(
X2,j ,k0 (t)

∣∣µξ=0
2,j ,k0

)
, ∀t (A5)

Note that this case implies that a “bad” firm has submitted
a “better than expected” product. This is precisely the case
we must consider, however, for the disadvantage of a bad
firm reputation persists even when different firms submit
substantively identical products.24

I first show that the disadvantage of a bad reputation
(ξ̂kB > 0) and the advantage of familiarity (Nk > 0) are both
of order t−1. By assumption X(t) starts at zero, which by
Eq. (2a) implies that µ̂(t = 0) = m for an unknown firm
(Nk0 = 0). Then for any NkB > 0 and positive ξ̂kB , a Bayesian
agency exploits the history of the firm’s submissions by setting
µ̂

ξ>0
i,kB,t=0 = m + ξ̂kB , according to Eq. (7a). Now consider two

products (i = 1, 2) submitted by two different firms (kB and
k0). The products will still be treated differently in regulation,
as

µ̂ξ>0
t

{
H
(
X1,j ,kB(t)

∣∣µξ>0
1,j ,kB

)}
> µ̂ξ=0

t

[
H
(
X2,j ,k0 (t)

∣∣µξ=0
2,j ,k0

)]
∀t < ∞.

Even with identical data, then, the posterior danger esti-
mates of the two products converge only in the asymptote
because the priors differ. By identity of the histories (A5),
x1t = x2t, ∀t, and the difference between the posterior esti-
mates is a parametric (nonstochastic) function of t−1:

µ̂ξ>0
t [H] − µ̂ξ=0

t [H] = (m + ξ)/s + x1t/σ
2

1/s + t/σ2
− m/s + x2t/σ

2

1/s + t/σ2

= ξσ2
i

(
σ2

i + st
)−1 (A6)

Let the time that it would take for the product of an un-
known firm to get approved be

tstop = inf
[
t, s.t. µ̂

ξ=0
i,k0,t

< η(t)
∣∣µξ=0

i,k0 < δA
]

and similarly define

tapp,kB = inf
[
t, s.t. µ̂

ξ>0
i,kB,t < η(t)

∣∣µξ>0
i,kB < δA

]
.

By Eqs. (A5) and (A6), tξ=0
stop < tξ>0

app,kB . But then a sufficient
condition for firm k = kB to receive quicker approval is

[δA− SkB(tstop)2] − [δA− Sk0 (tstop)2] ≥ µ̂
ξ>0
tstop ,kB[H] − µ̂

ξ=0
tstop ,k0 [H]

Notice that the comparison is conducted at t ≡ tstop . From
(A6), this occurs when

ξ̂kB ≤ σ2
i + ststop

σ2
i

[Sk0 (tstop)2 − SkB(tstop)2]. (A7)

It can be shown that Sk(tstop)2 has order t−2
stop , hence the term

in brackets will also have order t−2
stop . Approximately, then,

the right-hand side of (A7) has order t−1
stop . Hence as t rises,

(A7) is ever less likely to hold. Familiarity advantages hold
for products that receive relatively early approval. �

The propositions for early-entrant protection invoke the
agency taking into account its future decisions. Lemma 2
shows that the value function in Eq. (10) in the text satisfies
a sequential optimality across submissions. It cannot be op-
timal, in other words, for the agency to game the sequential
problem by holding off on the present drug to wait for other,
perhaps superior drugs to come along.

24 The demonstration here is direct and mostly algebraic. A more
analytic proof is possible using results from stochastic calculus, which
the author can supply upon request.
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Lemma 2. Let t∗app be the optimal approval time under the
payoff above. The policy of waiting for a short time (t∗app + τ)
so that another (possibly superior) drug may be approved, and
the approval payoff reduced, can never be optimal.

Proof. I consider the case where only one more product,
the (N + 1)th drug, is expected to be submitted in the future.
The result here is generalizable to a finite or infinite sequence
of product submissions. I temporarily relax the assumption
that all determinants of the pipeline value are invariant and
allow G∗(t) to vary during the interval τ. For the (N + 1)th
drug, I consider three cases.

Case 1: If the (N + 1)th drug is not submitted during the
interval τ; then G∗ is invariant over the interval. Let Aθ rep-
resent those determinants of the approval payoff that are not
a part of the pipeline value. Then (suppressing i) by waiting
for an interval τ, the agency gets a payoff of

A′
N = e−δτ

{
Aθ

[
1 − e−δ(Eχ[tsub(N+1)(λ)]+Eχ[t∗app(N+1)]−τ)cj G∗

N+1,χ(cj )
]}

.

By not waiting, the agency received

AN = Aθ

[
1 − e−δ(Eχ[tsub(N+1)(λ)]+Eχ[t∗app(N+1)])cj G∗

N+1,χ(cj )
]
.

It is optimal to wait iff A′
N > AN or iff

e−δτ
{
Aθ

[
1 − e−δ(Eχ[tsub(N+1)(λ)]+Eχ[t∗app(N+1)]−τ)cj G∗

N+1,χ(cj )
]}

> Aθ

[
1 − e−δ[Eχ[tsub(N+1)(λ)]+Eχ[t∗app(N+1)]]cj G∗

N+1,χ(cj )
]

⇒ e−δτ − e−δ(Eχ[tsub(N+1)(λ)]+Eχ[t∗app(N+1)])

> 1 − e−δ(Eχ[tsub(N+1)(λ)]+Eχ[t∗app(N+1)])
,

which is true only for τ < 0. �

Case 2: The (N + 1)th drug is submitted during the inter-
val τ. So G∗ is not invariant. Let the approval distribution
under this alternative policy be G∗′. Then waiting for τ is
optimal iff

e−δτ
[
1 − e−δ(Eχ[tsub(N+1)(λ)]+Eχ[t∗app(N+1)−τ])]G∗′

>
[
1 − e−δ(Eχ[tsub(N+1)(λ)]+Eχ[t∗app(N+1)])]G∗

⇒ G∗′(δτ) − G∗(δτ) > 1 − e−δτ (A8)

But given the functional form of G∗, G∗′(0) = 0, and
limt→0 g∗′(t) = 0, i.e., the cdf, pdf, and hazard are lowest at
the beginning of review. So Eq. (A8) cannot be satisfied.

Case 3: The (N + 1)th drug has already been submitted,
but has not been approved, before t∗app . Again, it is optimal
to wait iff Eq. (A8) holds. Assume it is optimal to wait to
approve the Nth drug for the interval τ. But then by the
same policy it must be optimal to wait on the approval of
the (N + 1)th drug for an interval τ to see if the Nth drug
gets approved. Then

∫ tsub(N+1)+τ

tsub(N+1)
g∗′ dt = 0 for the interval, and

Eq. (A8) cannot be satisfied. �

All propositions for early-entrant protection make use of
the following lemma.

Lemma 3. Given two drugs with identical danger (µN =
µN+1), the absence of early-entrant protection for the Nth rel-
ative to the (N + 1)th requires

γN,j
(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗cN+1,j

) ≤ γN+1,j (1 − γN,j ) (A9)

Proof. Early-entrant protection cannot hold if for any two
drugs i = N, N + 1, it is the case that AN ≤ AN+1, or

ψj Lj γN,j

N−1∏
i=1

(1 − γij )

[
Nmax∏

i=N+1

(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗cij

)]

≤ψj Lj γN+1,j

N∏
i=1

(1 − γij )

[
Nmax∏

i=N+2

(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗cij

)]

⇔




ψj Lj γN,j [(1 − γN−1,j )(1 − γN−2,j )L]

× [(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗cN+1,j

)
× (

1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗cN+2,j
)
L
]



≤




ψj Lj γN+1,j [(1 − γN,j )(1 − γN−1,j )L]

× [(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗cN+2,j

)
× (

1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗cN+3,j
)
L
]



Cancel like terms in the telescoping products on both sides
of the inequality to get (A9). �

Proof of Proposition 6

Strong early-entrant protection cannot hold if for any two
drugs i = N, N + 1, it is the case that AN ≤ AN+1, or (A9).
Now assume stationarity of cij . Then in expectation, (A9)
reduces to

cij
(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗(·)cij

) ≤ cij (1 − cij ),

which cannot be satisfied because P[t∗app = 0] = 0. For con-
cavity, notice that the likelihood of early-entrant protection
is increasing in e−δ(Eχ[tsub]+Eχ[t∗app ])G∗. The first derivative of
this expression with respect to N is negative, the second
positive. �

Propositions 7 and onward require the following lemma.

Lemma 4. Let γN = (α/β) (where 0 < α ≤ β) and let the
improvement for γN+1 be represented as γN+1 = [(α + θ)/β],
where θ ∈ (0, β − α]. Then conditioning on identical danger,
the expected approval time for drug i = N + 1 is less than or
equal to that for drug i = N whenever

e−δ(Eχ[tsub(λ)]+Eχ[t∗app ])G∗ ≥
(

1 − θβ

α2 + α

)
. (A10)

Proof. Rewrite (A9) as

(
α

β

)(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗

(
α + θ

β

))

≤
(

α + θ

β

)(
1 − α

β

)

⇒ e−δ(Eχ[tsub]+Eχ[t∗app ])G∗[α2 + θα]
β

≤ θβ − (α2 + θα)
β

⇒ −e−δ(Eχ[tsub]+Eχ[t∗app ])G∗ ≤ θβ

α2 + θα
− 1.

Proof of Proposition 7

Immediate. Unless θ > 0, (A10) cannot be satisfied.
Proposition 8 and its corollaries require the following

result.
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Lemma 5. Given maximal concave stochastic curing im-
provement, and given two drugs with identical danger (µN =
µN+1), then if there was early-entrant protection for the
(N − 1)th relative to the Nth, early-entrant protection must
prevail for the Nth relative to the (N + 1)th.

Proof. Let ε be an infinitesimal positive quantity (the ep-
silon of analysis). For any three drugs γN, γN+1, γN+2, we may
represent maximal concave stochastic improvement as

γN = α

β
, γN+1 = α + θ

β
, γN+2 = (α + 2θ − ε)

β
. (A11)

Assuming that early-entrant protection prevailed between
the Nth and the (N + 1)th drug is equivalent to assuming

e−δ(Eχ[tsub]+Eχ[t∗app ])G∗ < 1 − θβ

α2 + θα
. (A12)

Then there is no early-entrant protection iff AN+1 ≤ AN+2, or
(suppressing j )

ψLγN+1

N∏
i=1

(1 − γi)

[
Nmax∏

i=N+2

(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗ci

)]

≤ ψLγN+2

N∏
i=1

(1 − γi)

[
Nmax∏

i=N+3

(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗ci

)]
,

which by Lemma 3 implies

γN+1
(
1 − e−δ(Eχ[tsub]+Eχ[tapp∗])G∗cN+2

) ≤ γN+2(1 − γN+1).

Using (A11), this can be expressed as

(
α + θ

β

)(
1 − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗

(
α + 2θ − ε

β

))

≤
(

α + 2θ − ε

β

)(
1 − α + θ

β

)

⇒ (α + θ)
{
β − e−δ(Eχ[tsub]+Eχ[t∗app ])G∗[α + 2θ − ε]

}
≤ (α + 2θ − ε)(β − (α + θ))

⇒ e−δ(Eχ[tsub]+Eχ[t∗app ])G∗ ≥ 1 − β(θ − ε)
(α + θ)(α + 2θ) − ε(α + θ)

.

Now by (A12) and Lemma 4,

1 − θβ

α2 + θα
≥ e−δ(Eχ[tsub]+Eχ[t∗app ])G∗

≥ 1 − β(θ − ε)
(α + θ)(α + 2θ) − ε(α + θ)

.

So the absence of early-entrant protection now requires

1 − θβ

α(α + θ)
≥ 1 − β(θ − ε)

(α + θ)(α + 2θ) − ε(α + θ)

⇒ θ

α
≤ θ − ε

α + 2θ − ε
.

But limε→0[(θ − ε)/(α + 2θ − ε)] = [θ/(α + 2θ): contradic-
tion. �

Proof of Proposition 8

Let any γ1 and γ2 satisfy (A11), in which case (1)
dE[γ]/dNi,j =J > 0 and (2) d2E[γ]/dN2

i,j =J < 0 are satisfied
for all Ni,j =J . Then (1) follows immediately from Lemma 5.
For (2), note that whether or not there is improve-
ment, limN→∞ G∗(N, t) = 0. Then for any sequence i =
1, . . . , N, . . . , Nmax, it must be the case that for some two
drugs i = N, N + 1, AN ≤ AN+1. Then by Lemma 5, weak
early-entrant protection follows ever thereafter. �

Proof of Corollary 8.1

Note that in (A10) the right-hand side is strictly decreasing
in α. But α is simply the numerator of γ1. �

Proof of Corollary 8.2

The left-hand side of (A10) is strictly decreasing in λj . �

Proof of Corollary 8.3

Assume that each firm kdevelops Nk drugs randomly for a set
of JN diseases and that, for any disease j = J , NJ drugs are
submitted and only one receives strong early-entrant protec-
tion. Assume also that the order of submission for any K firms
is random (this is unlikely in a strategic environment). Then
for any firm, the likelihood of receiving strong early-entrant
protection for at least one drug is equal to [1/Nj ] × [Nk/JN].

�
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