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Abstract

I develop a simple stochastic model of inference and therapeutic utilization in the presence of placebo
effects, when the underlying medical condition may be self-remitting. In the model, expectations
generate a “felt” health state which can mimic the medically cured health state even when the
treatment in question has no real curing power. This effect may be augmented by self-limitation
of the medical condition for which the treatment is utilized. A human agent then applies Bayes’
rule to the felt history as if it were generated pharmacologically. A more sophisticated agent knows
of placebo effects but does not know the precise extent to which they contribute to curing. I
describe the bias that attends inference and the under - or overutilization of therapies under such
a model. A central result of the model is that human placebo learning is generally subject to
greater bias in estimating treatment efficacy when diseases are self-limiting. Human agents may
commit several types of decision errors under placebo learning. They may continually choose a more
costly (expensive, hazardous) treatment when a less costly one would work as well, or they may
continually use inferior treatments for life-threatening illnesses. When diseases are self-limiting,
both these types of error are more likely when the human agent has high initial beliefs about the
treatment. Possible applications of the model include the patent medicine industry, the robustness
of markets for herbal and nutritional supplements, and the contemporary stability of counterfeit
drug operations.



There is now increasing consensus that expectation-induced placebo response is a genuine neuro-

logical phenomenon. This agreement is attributable in part to experiments where placebo analgesia

has been reversed by the opioid antagonist naloxone (Levine et al 1978; Amanzio and Benedetti

1999), and in part to recent neuroimaging studies (Petrovic et al 2002; Wager et al 2004). Yet the

salience of placebo effects in clinical and behavioral settings remains under criticism and question

for at least two reasons. First, it remains possible that self-limitation of disease – alternatively,

“spontaneous remission” or “natural history” – can explain clinical and behavioral phenomena that

many attribute to placebo mechanisms (Hrobjartsson and Gotzsche (2001)). While inclusion of a

“natural history” or “no treatment” arm can validate placebo inferences, these remain rare in clin-

ical trials. A second issue concerns the mechanism of placebo response, and whether it draws upon

expectations or upon conditioning or some combination of the two (Amanzio and Benedetti 1999;

Stewart-Williams and Podd 2004).

Might self-limitation stand not as a substitute for placebo effects, but as a complement? Is

it possible, in other words, that the false inferences induced by self-limiting diseases could work

together with placebo effects to further complicate human learning about the efficacy of medical

and pharmaceutical treatments? There would appear to be no theoretical or empirical research

that addresses this question.

In this paper I develop a model of “placebo learning” and show how the learning bias induced by

placebo effects may, at least theoretically, be greatly exacerbated by self-limiting conditions. The

model of placebo learning is the first stochastic analytic model of its kind to my awareness.1 Placebo

effects are a subject of considerable study in almost every field of medicine, and in many fields of

psychology, but there exist few (if any) mathematical models dedicated to their analysis. This

is rather surprising, given the ubiquity of placebo effects in modern medicine and their intensive

study in neuroscience (Amanzio and Benedetti 1996; Guess, Kleinman, Kusek and Engel 2002).

The model is premised upon the following thought experiment: Consider the possibility that a

human agent, upon becoming ill, utilizes an inert treatment and that (1) the treatment itself has

little or no therapeutic value, but that (2) her illness naturally recedes and would have done so in

the absence of the treatment. If the agent is not aware of facts (1) and (2), she might wrongly

attribute therapeutic power to the treatment, and might then place greater belief in the efficacy

of the treatment than she would if she had (randomly) declined it at the time when she became

sick. If expectations-mediated placebo analgesia is operative, the agent’s inflated expectations

may then exercise additional curative power themselves, and valid inference regarding the “true”

(pharmacological) efficacy of the treatment may be further hindered.

This question is important not merely for scientific inference but also for the operation of
1The closest analog to this model appears to be the computational model of Redish (2004). I discuss the potential

nesting of Redish’s model in mine, and the potential nesting of mine in his, below.
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pharmaceutical markets. Even though drugs approved for marketing in the United States and

other nations have usually proven their therapeutic value versus a placebo regimen, it remains

possible that many of the observed clinical responses to these products after regulatory approval

and market entry are nonetheless due (partially or wholly) to placebo effect. In other words,

controlling for placebo effects in clinical research does nothing to prevent the operation of placebo

effects in the health care system. Despite the ubiquity of these phenomena in medical and other

settings, some interesting questions remain unexplored, especially by medical and social scientists.

◦ Do placebo effects potentially complicate inference by patients and their doctors about the

efficacy of medical treatments? Might this be true even if the existence of placebo effects is known

for a given therapy?

◦ How might placebo effects interact with the cyclic or self-limiting nature of diseases to influence

human inference about the efficacy of medical or pharmaceutical treatments?

◦ Might placebo effects complicate research-based inference on the returns to medical and

pharmaceutical investment, advertising, and other expenditures?

To address these and other questions, I offer here a simple mathematical model of “placebo

learning,” or of how otherwise rational human beings might learn from their own experience about

the efficacy of medical or pharmaceutical treatments in the presence of placebo effects. I model

placebo learning as a Bayesian inference process in which the agent’s observed health is directly (but

unknowingly) affected by the expectation of treatment. In the model, “expectation enhancements”

generate a “felt” or experienced history that mimics the health state that would have been generated

pharmacologically, and the agent uses Bayes’ rule to make inferences from the felt history as if it

were the “true” one.2 I describe the erroneous long-term inferences that can be generated by a

simple Bayesian inference process in the presence of placebo effects. I then discuss how a human

agent, fully rational except for her unawareness of placebo effects and their influence upon her

learning, chooses over time from a battery of medical treatments (drugs, for example), by solving

a multi-armed stochastic dynamic programming problem.

For purposes of this paper I define a placebo effect as an observable improvement in an agent’s

health state that is generated entirely by subjective expectations of a “treatment.” This improve-

ment prevails in the absence of the actual treatment but in the presence of a consumed experience

(the “placebo”) that has similarities to the treatment in any or all respects but the treatment’s

curative (e.g., pharmacological) mechanism. The clinical and scientific literature on such effects is

enormous (see Harrington 1997 and Kleinman, ed, 2002, for a summary and partial bibliography).

However, mathematical and computational analysis of placebo effects and their possible influences

upon human behavior have not been directly attempted.
2See Mullainathan (2003) for a similar substitution of perceived for real histories in the context of a memory-based

model of bounded rationality.
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The paper also offers a simple technology for simultaneously embedding the role of expectations

and the role of conditioning in placebo learning. In this respect, I emphasize that the neurobiology

of placebo effects is not the focus of analysis here; rather it is the potential influence of placebo

effects upon learning algorithms and dynamic programming that is assessed. From recent studies, it

would appear that one key to placebo learning lies in the initial expectations that the agent (patient)

attaches to the prospect of treatment and the essentially unobservable character of the treatment’s

curing mechanism (Amanzio and Benedetti 1999; Wager et al, 2004; Finniss and Benedetti 2005).3

It would seem a crucial property of placebo learning that most human agents cannot directly test the

curative power of the consumed treatment and cannot (without significant cost) ascertain whether

it is a genuine or effective treatment.

1. Inference under Placebo Contamination

1.1 Structure

An infinitely-lived single agent (“Patient”) faces an infinitely-repeated problem and experiences

one of two exclusive health states, illness Xt = XILL or wellness Xt = 0. I assume that the patient

starts healthy and that at some time t ≡ 0 she eventually experiences sickness. Sickness can be

of two types, chronic stable (under which the sickness persists unless treated and perhaps even if

treated), or cyclic (under which there is reversion to the healthy state after some elapsed interval

of time).

Under transition to the sick state, the patient may be induced to try up to Q + 2 treatments,

where no more than one treatment may be undertaken in any period. Throughout treatments

(drugs) are indexed by i and diseases by j. The agent’s action in any given period is to choose

actions σt over these treatments. For one treatment, called the “default” (σt = 0), the agent

is perfectly informed about the value of a treatment. Without loss of generality, we say that the

agent begins with an unknown “incumbent” treatment σt = 1. There is also a battery of alternative

treatments σt = q, 1 ≤ q ≤ Q < ∞. For all but the default treatment, the agent is imperfectly

informed about a treatment’s efficacy and can learn it only from experience (utilization) of that

treatment. For the incumbent treatment, efficacy may be denoted γ1j ∈ Γ ≡ [0, 1]. It is convenient

to think of γ1j as a curing probability, or in a clinical context, the probability in a sequence of

Bernoulli trials that the patient “responds” to medication at time t. The agent has prior beliefs over

γ1j that are represented by a Beta distribution; thus, γ1j ∼ β(m, n). The Bernoulli properties of the

state space and the Beta-distributed posterior offer a highly generalizable and flexible framework
3Unobservable, that is, to the agent who makes dynamic utilization decisions.
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for analytic solution of the model (Gittins 1979).4 Still, some complexities require computational

simulation, which I discuss below.

One and only one treatment may be used in any given period, but in any period, all treatments

are potentially available for use. The human agent, knowing that all (uncertain) treatments have

Beta-distributed efficacy, chooses that treatment for which the prior (initially expected) distribution

of curing efficacy is highest. If this arm is eventually abandoned, then the agent’s best alternative

is that treatment with the next highest prior, then so on down to the point where next highest

prior is that of the default, which if tried once is kept forever. The problem is benchmarked by the

availability of this default treatment whose curing probability is known with certainty as α ∈ (0, 1).

The known quality of α then becomes a decision-theoretic “certainty equivalent” against which the

value of continued utilization can be assessed. The patient can also forgo treatment, leaving her

sickness “untreated” entirely.

We represent pharmacological curing by any given treatment by a Bernoulli variable Gijt (with

i = 1 for the incumbent). Let Gijt = 1 represent the outcome that the individual with disease j,

who utilizes treatment i, exhibits a healing response at time t, with 0 scoring no response. Gijt is

a Bernoulli variable whose mean is γij. Then the individual’s pharmacologically-determined health

state may be represented by Yijt = (1 −Gij)XILL
ij , such that Yijt is the human agent’s health state

in period t, after onset of disease j and utilization of the ith treatment.

1.2 Inference

If placebo analgesia were impossible and sickness states were not self-remitting, the agent’s

observed history would be sufficient for optimal (Bayesian) inference as to the pharmacological

efficacy γ1j of the incumbent therapy. For any stopping time τ , the optimal estimate is (DeGroot

1970)

γ̂∗1j,τ+1 = 1 − (n−m) +
∑τ

t=0 Y1jt

n+ τXILL
(1)

The central problem in placebo learning is that the human agent observes not Yijt, but something

else, something that is “contaminated” by her own expectations about the incumbent treatment.

Her own expectations can influence the health state that she sees.

To model this process, let us first represent healing via endogenous opioids. Let the parameter

λij (0 ≤ λij ≤ 1) represent “suggestibility,” or the degree to which the agent’s ailment is susceptible

to curing by expectancy. Suggestibility of pain and other symptoms of disease to expectations lies
4One alternative possibility is to consider health as a continuous stochastic process (a Wiener or Poisson process)

and then to consider treatments as possible alterations of the process’s first moment or limiting distribution. Work
is currently underway using Wiener process realizations of health, but continuous state-spaces and continuous time
both complicate the model in numerous ways, and I have decided to commence analysis of this general problem using
the simple but quite flexible framework here.
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at the core of placebo-effect phenomena (Amanzio and Benedetti 1999; Guess, Kleinman et al

2002; Wager et al 2004). I first consider suggestibility as an exogenous constant, to keep the focus

on Bayesian learning under influence of placebo effects. However, recent evidence suggests that

“endogenous opioids” (such as dopamine) exhibit phasic response patterns whose movements are

substantive and important to understand, and I model this possibility below. To model healing

by placebo effects, further let Aijt represent the event that the individual using treatment i for

disease j responds to either medical curing or a placebo effect at time t. Aijt is a binary variable

(Aijt = 1 implies a healing response; 0 scores no response) with mean Ezt [Aij,t+1] = αijt =

(1 − λij) γij + λij γ̂
felt
ijt , where Ezt is the expectation operator conditioned upon T = t and Z = z.

The variable γ̂felt
ijt is the agent’s estimate of the efficacy of the incumbent treatment based upon

(placebo-contaminated) self-observation. Given this estimate, we can represent the individual’s

experienced health state Zijt as a psychosomatically-weighted combination of response to actual

treatment and placebo effect, or Zijt = (1 − Aijt)XILL
j .

Under placebo learning, then, the human agent observes Z1jt, not Y1jt. If the agent uses Bayes’

rule in every other respect, but (unknowingly) substitutes Z1jt for Y1jt in Bayesian learning, she

estimates the efficacy of the treatment as follows.

γ̂
felt
1j,τ+1 = 1 − (n−m) +

∑τ
t=0 Z1jt

n+ τXILL
j

(2)

Along with the equations for Aijt and Zijt, equation (2) specifies a recursive structure that

creates the possibility for “self-fulfilling prophecies” in medical treatment. If initial beliefs about a

treatment are (wrongly) high, expectancy-based healing can keep these beliefs artificially inflated

even when the agent is learning rationally from her own medical history. So too, wrongly deflated

beliefs about treatment can remain depressed. Placebo learning thus places a causal premium on

what these initial beliefs are and where such expectations come from.

Beliefs: Confidence, Prognosis and Advertising. Intuitively, we can imagine initial beliefs about

product quality as a function of (i) beliefs about the curability of the agent, (ii) beliefs about the

curability of the disease with which the agent is afflicted, and (iii) beliefs about the match between

product, disease and patient. Let the Beta variate µ represent confidence, the individual’s faith

that she can be cured by any given therapy. Let the Beta variate µj represent prognosis,or the

individual’s belief that a given disease is curable, whatever the therapy. This may be a function of

messages received from one’s physician (“You have three months left”; see Christakis 1999), family

members and associates (“That disease took Harold quickly”) or from memories (the daughter

whose mother died young of heart disease might be less willing to exercise because she believes it

her lot to die young). Finally one can also imagine hype, the subjectively expected probability that

a match of drug i to disease j will result in a cure. As with prognosis, hype might be affected by
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therapeutic messages, but unlike prognosis may also be affected by advertising. Then initial beliefs

are given by γ̂felt
ij0 = inf

[
µ, µj, µi

]
. This simple functional form simply embodies the notion that, for

instance, an advertising blitz directed at consumers and doctors is of little help in raising patient

beliefs about the likelihood of being cured when the patient is told that she has three months to

live.

We can imagine most human agents (patients, physicians) as confusing Z1jt and Y1jt entirely,

though it is possible that a more sophisticated agent knows of the possibility of placebo effects, and

I consider this possibility shortly. If Z1jt and Y1jt are conflated, then the observed (“felt”) health

state for individual using the incumbent treatment, with expectation enhancements, is E [Z1jt] =

XILL
j

(
1− (1− λ1j) γ1j − λ1j γ̂

felt
1jt

)
. Again for any stopping time τ , the behavior of the “felt”

estimate in the τth period can be described as

E0

[
γ̂felt

1ij,t=τ

]
=
m+XILL

j

[
τγ1j + λ

(∑τ−1
t=0 ψ

felt
1jt

)]
n + τXILL

j

(3)

where ψfelt
1jt is the error of the felt estimate for the incumbent treatment at time t. The long-run

behavior of the felt estimate will then depend upon the convergence (if any) of the series
{
ψfelt

1jt

}
.

The difference between the optimal Bayes estimate of γ̂∗1jt and the felt Bayes estimate γ̂felt
1jt can be

expressed in terms of the “observables” Y1jt and Z1jt.

As a benchmark case, it is possible to characterize aspects of the asymptotic distribution of

estimated curing when the agent naively uses the felt history as if it were the true one, without self-

remitting conditions. It turns out that placebo-learning can induce highly ‘ ‘inefficient” estimates

of the pharmacological efficacy of treatments, and that the “felt” estimate of efficacy converges

more slowly to the true value γij than does the optimal estimate in (1).

Comment 1. Asymptotic Consistency and Inefficiency of Bayes-Estimated Curing based on the

Felt Curing History. Let the history H
felt
t = (Z1, Z2, ...Zt−1). If γij0 �= γ1j, then ∀Hfelt

t ,

limEt

[
ψt | Hfelt

t

]
= 0. For any history, the estimate γ̂felt

1jt is inefficient in that its variance is

greater than that of the optimal estimate γ̂∗1jt. Proof. Proofs of all comments and propositions are

in the Appendix.

1.3 Inference under Self-Conscious Awareness of Placebo Effects While most patients in medical

settings will not know of their own susceptibility to placebo effects, it is quite possible that some

will, or (more likely) that their doctor will consider this possibility.5 Consider then the case

of a sophisticated agent, who knows of the existence of suggestibility (λ) but does not know its
5To the extent that incentive compatibility issues matter here, I assume that the agency problem between doctor

and patient is costlessly solved. This problem is one obviously deserving of a separate modeling effort.
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precise value. An example of this would be a health care provider who knows of the existence

of placebo effects in a given population, and therefore knows of λj (which we consider as the

population-averaged extent of psychosomaticity) but does not know the patient-specific value λij.

Until this point, in other words, the agent has proceeded under the assumption that λ = 0.

The self-conscious agent now supposes that a population average λj exists and then substitutes

this quantity for λ1j in the Bayes equation (1), iterating expectations throughout. Then the

self-conscious agent estimates the curing power of the therapy by solving for γ1j in the following

equation: Etλ [α̂1jt] =
(n−m)+

[
(1−λ)γ+λγ̂

felt
1j,t−1

]
t

n+t . Then the optimal Bayes estimate of γ, given all

available information, is γ̂λj ,t =
t−1

∑
A1jt−λγ̂felt

1j,t−1

1−λ1j

Expressed in terms of true parameters λ1j and γ1j, this is

E
[
γ̂λ1j

]
=
γ1j − λ1jγ +

(
λ1j − λ1j

)
τ−1 ∑τ

t=0 γ̂
felt
1jt

1 − λ1j
(4)

Equation (4) shows essentially that the self-conscious agent still retains an inconsistent estimate

of the curing power of the consumed therapy, except under several knife-edge conditions (the

simplest of these is perfect estimation of the placebo effect, or λj = λ1j). Let ψ
λ1j

it be the

augmented bias of the “self-conscious” felt estimate at time t. By a argument similar to that of

Comment 1, it can be shown that ψλ1j

1jt has asymptotic inefficiency for any ελ �= 0.

2. Placebo Learning with Self-Limiting Diseases

2.1 The Complementarity of Placebo Learning and Self-Remission

Consider self-limitation as a binary variable Wjt ∈ [0, 1]. Here Wjt = 1 corresponds to the

event that the jth disease self-remits in period t and 0 corresponds to the event that the disease

does not remit (though the unremitted disease may be subject to curing by genuine treatment or

placebo). We consider a self-limitation cycle by writing the first moment of Wjt as ωjt. Then a

self-limitation cycle is a convergent sequence {ωjt} with length tW . The remission probability ωjt

begins at zero (the disease cannot remit during the period of onset) and by definition reaches ωmax
j

at tW . Once self-remission begins, convergence is monotonic such that per-period improvement is

always non-negative (ωjt − ωj,t−1 ≥ 0, ∀t). We begin by considering the agent’s inference problem

with one cycle only, and consider multiple cycles as an extension in the following section. The agent

now observes

Zfelt,W
ijt = XILL

ij (1 −A1jt) (1 −Wjt)

If the naive agent substitutes the history of Zfelt,W
1jt for the history of Y1jt in the Bayes equation

1, then we can describe the limiting distribution of the estimator. Whereas Comment 1 establishes
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the main problem with “pure” placebo learning as inefficiency of estimation, Comment 2 shows

that adding a single cycle of self-limitation to placebo learning can lead to biased and inconsistent

estimation of treatment efficacy in the long run.

Comment 2. Asymptotic Inconsistency of Bayes-Estimated Curing based on the Felt Curing History

with Self-Limitation. Assume that any one of the following four conditions holds:(a) ωj1 ≥ γij, (b)

ωj1 ≥ γ̂felt,W
1j0 −α̂ijt

1−α̂1j0
, (c) λij

(
γ̂felt,W

1j1 − γij

)
≥ γ̂felt,W

1j0 −ωj1

1−ωj1
− γij, (d) in period τ > t, ωmax

j(τ ) ≥ γij, or

ωmax
j(τ ) ≥ γ̂

felt,W
ijt −α̂ijt

1−α̂ijt
. Let the history Hfelt,W

1t =
(
Zfelt,W

1,j,1 , Zfelt,W
1,j,2 , ...Zfelt,W

1,j,t−1

)
. If µ1j0 > γ1j, then

∀Hfelt,W
1t ,

lim inf Et

[
ψfelt,W

1jt | Hfelt,W
1jt

]
≥

(
1 − ωmax

j

)
α̂felt,W

0 + ωmax
j − µ1j0 > 0

Inspection of the conditions shows that if ωj,t=1 > γi=1,j, then the agent’s upward bias is

increasing in ωj and λ1j. A crucial property of placebo learning under self-limitation of disease is

that the self-limiting force need not be great in order to induce false inference. Nothing in Comment

2 requires that the series ωjt converge to one. In other words, an appreciable probability of

recurrence can exist in any given period and placebo learning will still give rise to biased estimation

of treatment efficacy.

2.2 “Endogenous” Placebo Learning with Self-Limiting Diseases: The Case of Multiple Cycles

Another point of complementarity between expectancy-based placebo mechanisms and self-

limiting conditions arises when there are multiple cycles of disease, potentially accompanied by

multiple cycles of utilization. I index “cycles” of diseases by c. When the human agent becomes

ill for the first time (c = 1) and uses the incumbent treatment, then upon remission of the disease

(ωc
ijt = ωc

j she re-enters a state of “health” (Xijt = 0). We assume with certainty that the agent

will experience illness again, such that for some t > tωc
j
, Xijt = XILL. We then say that a second

cycle of illness (c = 2) has begun, and we can write the variables observed by the human agent as

Xc=2
ijt and Zc=2

ijt .

In the present model, expectancy-based placebo effects influence human learning if and only if

prior expectations depart from the true pharmacological value of the treatment (γ̂felt,c
1j0 �= γ1j). Yet

no such condition is required in order for self-remission to influence human estimation of efficacy.

We can then imagine a situation in which the human agent “starts” with a correct estimate of the

incumbent treatment’s efficacy (γ̂felt,c=1
1j0 = γ1j) and then ask what occurs to the “starting” values

γ̂felt,c
1j0 as the cycles of disease progress and c increases. Comment 3 demonstrates that under a

rather flexible set of conditions, the human agent can start with a “true” prior and end up with a

false one, thereby setting the inefficiency-based dynamics of Comment 1 into motion.
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Comment 3. Asymptotic Inconsistency of Curing Priors Across Cycles. Assume that any one

of the four conditions (a) - (d) in Comment 2 holds. Assume “accuracy” of the prior such that

γ̂felt,c=1
1j,t=0 = γ1j. Then ∀c, Hfelt,W

1t ,

E
c,
⋃

H
felt,W
1t

[
γ̂felt,W,c+1

ij0

]
≥ E

c−1,
⋃

H
felt,W
1t

[
γ̂felt,W,c

ij0

]
and

lim
c→∞ inf E

c,
⋃

Hfelt,W
1t

[
γ̂felt,W,c+1

ij0

]
> γ1j

Comment 3 shows that when there are multiple cycles of illness and multiple cycles of utilization

of the incumbent treatment, then an agent can start with the truth (or something less optimistic,

or more) and still arrive at an optimistic estimate of the incumbent treatment’s curing efficacy.

3. Utilization under Placebo Learning

3.1 Drug Utilization as a Dynamic Learning Problem. The results established in the previous

section can be employed to examine the case of a rational agent who decides at each time whether

or not to use a given medical treatment. The utilization problem may be approached as a special

case of the multi-armed bandit problem (Gittins 1979; Banks and Sundaram 1992) The agent has

per-period health valued at I ∈ 
+, and discounts future periods by a factor δ (0 < δ < 1). Let

utilization σi,t ∈ (0, 1) indicate whether the agent uses treatment i in period t. The ith treatment

has fixed cost ki > 0. Let Fi (with primitive fi) be the value function for the ith drug, conditional

on the agent choosing that drug. The agent’s problem is to maximize the difference between known

per-period health and a stochastic loss function L, where the agent is presumed “risk-neutral.”

supEt=0

∑
δtF

[
It −XILL

ij

(
1 −Aijt

[
γij, λij, γ̂

felt
ijt

])
− kiσit

]
(5)

The agent starts with the incumbent treatment, and after t periods of utilization, given m

successes from n ≥ m trials, then γ̂ijt = m
n . The problem is then a multi-armed bandit case, with

all but one (Q+1) arms having unknown payoffs, and the default (σt = 0) treatment having known

curing probability β, which functions as a terminal payoff for the agent’s problem. As long as the

default is not too costly, the agent knows that she can do at least as well as utilizing the default

treatment when sick. Drug-specific, per-period value functions are then as follows. If σt = 0,

E [Ft] = βXILL − k0. If σt = 1, E [Ft] = γ̂1jtX
ILL − k1. If σt = q, E [Ft] = γ̂qjtX

ILL − kq

Under standard optimization, γ̂ satisfies Bayes’ rule, or equation (1). From dynamic program-

ming, F i
t (σt−1, γ̂t) = sup

{
F 0

t (σt−1) , F 1
t (σt−1, γ̂t) , F

q
t (σt−1, γt)

}
= sup

{
βX−k0

1−δ , F 1
t (σt−1, γ̂t)

}
, and
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F ∗ (σt−1, γ̂t) = lim
t→∞Ft (σt−1, γ̂t). For the default option, health valuation satisfies the following

functional (Bellman) equation: F 0
t (σt−1) = (βX − k0) + δF 0

t+1 (σt), and for the uncertain option,

F 1
t (γ̂t, β) = f1

t + δ
∫
� f

1
t+1 (γ)µ (dγ)

= (γ̂tX − k1) + δ
[
γ̂tF

1
t+1

(
σt = 1, γ̂+

t+1

)
+ (1 − γ̂t)F 1

t+1

(
σt = 1, γ̂−t+1

)]
where γ̂+

t+1 = mt+1
nt+1 and γ̂−t+1 = mt

nt+1 . Then F ∗ (σt−1, γ̂t) = sup
{

βX−k0
1−δ , F 1

t (σt−1, γ̂t)
}

The solution to a problem of this nature is well known and entails the human agent’s calculation

of a dynamic allocation index (DAI) or “Gittins index.” Intuitively, the Gittins index of an uncertain

treatment is the minimum certain reward that an agent would choose over that treatment, given

everything that the agent knows about the uncertain treatment. For any given β, let η = βXILL−k0
1−δ

stand for the expected terminal reward associated with choosing the default option forevermore. For

the ith treatment (arm), and a (possibly optimal, possibly biased) estimate of curing γijt, the agent

would calculate the DAI as Ri(γ̂ijt) = inf{η ∈ 
+| sup
[
η, f i

t + δ
∫
f i
t+1 (γ̂ijt)µ (dγ)

]
= η}. Given

a calculable Gittins index for any treatment, then the agent’s optimal strategy is to choose the

treatment with the maximum Gittins index. This, then, is how a rational agent would dynamically

utilize a battery of Q + 2 medications, where one has known curing probability. Again, this

technology is well-known and is a special case of bandit learning developed in statistical decision

theory (Gittins 1979; Banks and Sundaram 1992). What has not been analyzed is the behavior of

such a rational, learning agent when bias from placebo-learning unknowingly affects optimization.

This is the aim of the following subsection.

3.2 Errors in Dynamic Utilization with Placebo Learning: Type I Error as Overpayment for

Disguises and Sugar Pills. We may approach the possibility of suboptimal choice by human agents

as a form of Type I or Type II decision error. A Type I error occurs when the agent uses the

incumbent treatment but should have used another instead. Such overutilization can happen in one

of two ways: the agent either overpays for a medication whose “work” is being done by beliefs, or she

uses the wrong medication because her felt history conceals the true state of physiological damage.

First, if placebo curing is separable from the treatment used, such that the agent could have taken

a disguised pill identical to the incumbent treatment at lower cost and still have experienced the

same curing history, then the agent is overpaying for the incumbent treatment.6 As a benchmark,

suppose that the default treatment could be so disguised. If the default treatment could be disguised

in this way, then its efficacy could be raised under placebo effects. Yet it remains possible that

the agent, by paying for the more expensive treatment, could be worse off than if placebo effects

were not a possibility at all. The period-t value of the disguised default treatment under placebo
6This separability is intuitive but requires a particular topological concept for development in the model. See the

Appendix and Summers (1972, Theorem 4.2) for the notion of topological separability used.
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learning is V χ
t,k=k0

= γ̂felt,W
χ,t XILL

χj − k0 + δ
∫
� f

χ
t+1 (γ)µ (dγ) . The period-t value of the incumbent

treatment under placebo learning is V i
t,k=ki

= γ̂felt,W
i,t XILL

ij − ki + δ
∫
� f

i
t+1 (γ)µ (dγ) . Then we can

define by ΦI,B
t = 1 the “benchmarked” Type I error that occurs when σt = i and V i

t,k=ki
−V χ

t,k=k0
>

V χ
t,k=k0

− βX−k0
1−δ . Fixing k0 and ki, this overpayment error is increasing in λ and in the value of the

default treatment β.

Another possibility is that the disguised pill is a “sugar pill” with no pharmacological value.

For any incumbent medication q, let treatment σt = χ(q, γ̂felt
t ) represent the cheapest possible

sugar pill that could yield the same curing history, but with cost kχ < kq. This scenario has been

suggested by clinicians and scientists (Kirsch and Sapirstein 2002; Kirsch et al, 2002) who suggest,

on the basis of a meta-analysis clinical trials, that the aggregate efficacy of SSRIs is not superior to

placebo treatments. The ethical implications of intentional “placebo prescriptions” are subject to

considerable debate (Hjobartsson and Gotzsche 2004). I sidestep the normative usse here. Still, the

possibility that rather expensive SSRIs are not demonstrably superior to inert treatments suggests

that alternative treatments may be a less costly means of ameliorating depressive and anxiety

disorders.

A placebo-constrained human agent applies Bayes’ rule to the observed series
{
Afelt,W

1jt |λ1j > 0
}

as if it were {G1jt} = {A1jt|λ1j = 0, ωjt = 0}. Define by ΦI,χ
t = 1 the Type I error that occurs when

the agent utilizes the pharmacological treatment when she could pay less for a sugar pill and do at

least as well in health. Formally, this occurs when σt = 1 and γ̂felt,W
1,t XILL

j −k1+
∫
f1
t+1 (γ)µ (dγ) ≤

γ̂felt,W
χ,t XILL

χj − kχ +
∫
� f

χ
t+1 (γ)µ (dγ). Similarly define by φI,χ

1jt the probability of a Type I error at

time t.

Comment 4: Asymptotic Type I Error (Overpayment) under Placebo Learning, relative to Dis-

guised Default. For any chosen period t, let σt = 1 and γ̂felt,W
1,jt XILL

j − k1 + δ
∫
� f

1
t+1 (γ)µ (dγ) ≤

γ̂felt,W
χ,t XILL

χj − kχ + δ
∫
� f

χ
t+1 (γ)µ (dγ).

Then

Pr
[
sup ΦI,B

t

(
Hfelt,W

t

)
= 1

]
> Pr

[
sup ΦI,B

t (Ht|λ1j = 0) = 1
]
,

and

lim supφI,B
1jt

(
Hfelt,W

t

)
≥ lim supφI,B

1jt (Ht|λ1j = 0) .

Comment 5: Asymptotic Type I Error (Overpayment) under Placebo Learning, relative to Sugar

Pill. For any chosen period t, let σt = 1 and γ̂felt,W
1,jt XILL

j −k1 +
∫
� f

1
t+1 (γ)µ (dγ) ≤ γ̂

felt,W
χ,t XILL

χj −
kχ +

∫
� f

χ
t+1 (γ)µ (dγ). Then Pr

[
sup ΦI,χ

it (Ht|γ̂1j0 = 0) = 1
]

is weakly increasing in γ̂1j0, and for

any γ̂1j0 > γ̂2j0, lim supφI,χ
ijt

(
Hfelt

t |γ̂1j0

)
≥ limsupφI,χ

2jt (Ht|γ̂2j0).
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The intuition here is that if placebo learning were not operative, the agent would eventually

abandon the incumbent treatment in favor of the default, and could do no worse than this. With

placebo effects, the value of the default treatment is raised, but the agent instead fails to abandon

an incumbent treatment whose cost is so high that the agent would have been better off in a world

without placebo effects (or where she knew of placebo effects and the separability of beliefs from the

incumbent treatment). The “amount” of overutilization – here conceived as the overpayment in-

duced by the (integrated or average) deviation of the series
{
σ∗t (γ̂∗1jt)

}
from the series

{
σ∗t (γ̂

felt
1jt )

}
–

is increasing in λ1j and in the quantity (µ1j0 − γ1j). Under self-limitation, the series
{
σ∗t (γ̂

felt,W
1jt )

}
diverges infinitely from the series

{
σ∗t (γ̂∗1jt)

}
.

As a plausible application of these results, consider again Branthwaite and Cooper’s landmark

(1981) study of branding and response to aspirin versus placebo. If branded aspirin were consider-

ably more expensive than branded placebo, and the analgesic effect of expectations were separable

from the aspirin, then a human agent could do nearly as well at much less cost if her meta-rational

doctor prescribed her branded placebo instead of branded aspirin. Alternatively, if the incumbent

treatment was a highly expensive SSRI (expensive not merely in terms of price, but also in terms

of side-effects and risks), then if there were some less costly means of manipulating expectations

(meditation, spiritual regimens, exercise, positive thinking, affirmations, therapy), the depressive

agent could use these methods and possibly be better off. The placebo-learning model suggests

that she will not abandon the incumbent, however, because expectations are inflated and utilization

under placebo learning cannot falsify those expectations. The degree to which the human agent

could do better would be an increasing function of the self-remission probability of the disease.

Because pain, depression, and other conditions for which placebo responses have been studied are

highly cyclic conditions with respect to pain/misery/anxiety, human agents with these maladies are

more likely to find themselves in suboptimal utilization situations the more more cyclic are their

underlying conditions.

3.3 Errors in Dynamic Utilization with Placebo Learning: Undertreatment. A second form

of Type I error occurs when the agent’s “felt” history wrongly (but unknowingly) understates

the true physiological damage being done by a disease. One salient historical example of this

sort of overutilization may lie in the vast market for “patent medicines” in the nineteenth- and

twentieth-century United States (Young 1967). Doctors prescribed (and consumers eagerly took

and bought) sham cancer “cures” which often made them feel better but did not address the

underlying malignancy. Or they gave their children opium-laced tonics for influenza. All the while,

they avoided treatments (imagine these as the “default” option of the present model) that would

have presented a higher actual curing probability than the incumbent.

Undertreatment can occur if, unknown to the agent, the “felt” history conceals a true pathology.

12



Suppose then that the the agent’s self-observable health follows Zfelt,W
1jt but that an undetected

disease process (diffusion of a malignancy, hypertension, arterial occlusion) continues according to

Y1jt. If the sum of Y1jt is greater than an exogenous cutoff point ξj, which the agent knows, then

the agent “dies,” such that behavior is stopped and a known terminal penalty Dj > 0 is incurred.7

Again, the placebo-constrained agent observes only Zfelt,W
1jt , not Y1jt. Let σt = q∗ represent the

strategy whose pharmacologically determined Gittins index is highest. Given sickness XILL, the

agent using the q∗th treatment would have died at τ real. But the placebo-learning agent using the

incumbent treatment expects, at the beginning of the problem, to die at τ felt = Efelt,W
0 [τ |γ1j,t=0].

Then define by ΦI,D
t = 1 the Type I error that occurs when the agent utilizes the incumbent

treatment when she would have been better off using the q∗th alternative (at a minimum, the

default). Formally, this occurs when

Pr

[
sup

∑
t

Y1jt(σt = q∗) > ξj

]
δτreal

Dj +
τreal∑
t=0

δt(Y1jt(σt = q∗) − kq∗)

> Pr

[
sup

∑
t

Z
felt,W
1jt > ξj

]
δτfelt

Dj +
τfelt∑
t=0

δt(Z1jt − k1)

where E[τ ] = E [τ | inf τ |∑t Y1jt > ξj]. Similarly define by φI,D
1jt the probability of a “deadly”

Type I undertreatment error at time t.

Comment 6: Asymptotic Type I Error (Undertreatment) under Placebo Learning. For any stop-

ping time τ , with σt = i, letPr
[
sup
t→τ

∑
t Y1jt > ξj

]
δE[τ ]Dj > and Pr

[
sup
t→τ

∑
t Z

felt,W
1jt > ξj

]
δE[τ ]Dj.

Then

Pr
[
sup
t→τ

ΦI,D
τ

(
Hfelt,W

τ

)
= 1

]
> Pr

[
sup ΦI,D

τ (Hτ |λ1j = 0) = 1
]
,

and

lim
τ→Θ

supφI,D
1jτ

(
Hfelt,W

τ

)
≥ lim

τ→Θ
supφI,D

1jτ (Hτ |λ1j = 0) .

At its core, then, placebo learning can lead to failure to abandon incumbent treatments when

doing so would enhance the agent’s health or utility. Abandonment might be optimal because the

human agent could achieve an equal health state at much less cost with another treatment (where

“cost” can be interpreted as expense, side-effects or risk). Or abandoning treatment might be

optimal because the incumbent treatment is inferior at curing a deadly illness. This second sort of

failure also intimates how different sorts of decision errors are related to one another. An agent’s
7This requires relaxation of the one of the earlier assumptions of the model, namely that agents are infinitely

lived. This assumption is necessary to characterize the t = ∞ case for a single cycle, but it can be relaxed for the
present sub-analysis without loss of generality, if we assume that even a finitely-lived agent can feasibly compute
expectations over an infinite time-horizon.
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long-run failure to abandon the incumbent treatment can be correlated with long-run failure to

experiment with other, possibly superior therapies. That is, a Type I error can generate Type II

errors with respect to other treatments, with appreciable health consequences.

Of course if suggestibility is absent (λ1j = 0) and self-remission is not a possibility or is un-

known, estimation of γ1j is unbiased and efficient. Then the human agent eventually abandons the

incumbent therapy according to an optimal stopping program.

3.4. The Priority of Initial Beliefs Under Placebo Learning with Self-Limiting Diseases. For

diseases with self-limitation, human error does not necessarily occur if the human agent places

low faith in uncertain treatments. Intuitively, if the human agent becomes ill, but possesses such

low confidence in available treatments that she leaves her condition untreated entirely, then then

the proper inference from “natural” healing of the disease is that no treatment was necessary. In

other words, false inferences about the efficacy of uncertain treatments are not possible if those

treatments are not utilized to begin with.

Although it is a rather straighforward result from the model, it is worth pointing to the existence

of some histories under which the agent pessimistically abandons the incumbent treatment before

self-limitation probabilities rise sufficiently, leading to optimal utilization. One interpretation of

the model is then that human learning and decision making is particularly affected by economic

and social mechanisms that lead initial beliefs to be higher so that agents utilize uncertain and

untried therapies when they first get ill.

Comment 7: Utilization and Initial Beliefs. Both mean utilizationEt [σt] and mean overutiliza-

tion Et

[
ΦI

t

]
are non-decreasing in γ1j0. Both relationships are strictly conditional upon (increasing

in) suggestibility.

4. Discussion and Extensions

I have presented a dynamic stochastic model of treatment utilization by a human agent whose

rationality is constrained by placebo effects. Analysis of this model suggests that, far from be-

ing competing mechanisms, expectancy-based placebo effects and self-limitation of disease may

reinforce one another in their frustration of valid human inference about the efficacy of medical

or pharmacological treatments. The model elaborated here is of course limited by its simplicity,

which comes mainly in the functional (probabilistic) forms adopted for representation of human

inference. Still, the functional forms here are reasonably flexible, and the structure elaborated

in the model offers a tractable foundation for building more complex models where some of the

following properties might be explored.

Non-Convergent Cycles. Some diseases do not remit entirely but wax and wane in their felt
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intensity or pain. The model here is assisted greatly by the convergence requirement, and for

this reason a useful extension would consider non-convergent illness cycles.

Strategic Firms, Advertising and Pricing. In the presence of placebo learning, consumers and their

doctors may be less willing to switch medications in the presence of experienced response to

a particular drug. To the extent that placebo effects are operating, the firm then may have

fewer incentives to price competitively, and it may have greater incentives to advertise drugs

to manipulate beliefs. As a conjecture, this problem may be more appreciable when human

learning is constrained by memory limitations.

Dosage-Response Curves. The model here considers utilization as binary – the treatment is used

or is not – but more complex relationships between “amount” of utilization per period and

human learning should be explored theoretically, as well as empirically. However, this point

may also be rendered as a critique of the empirical literature. Very few studies in the placebo

literature examine dose-response relationships in the placebo effect, and little to nothing is

known about precise functional relationships between placebo doses and placebo responses,

particularly when the same human agent is exposed to different doses of the same treatment

over time.

Computional Models with Neuro-Dynamic Programming. Further analysis of models along the

lines of Redish (2004) can only help to illustrate these dynamics. One direction in which the

current analytic model points us is towards the possibilty of diffentiating between expectancy-

based placebo healing and reinforcement-learning mechanisms, and to view these mechanisms,

too, as potential complements (Amanzio and Bendetti 1999). In addition, the analytic model

here suggests that incorporation of self-remitting conditions into computational models would

yield fruitful inquiry.
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APPENDIX

We being with a characterization of the problem. Let X be a topologically complete and

separable Borel space with probability measure P (X). Let H∞ represent the Hilbert cube, or

countably many copies of the unit interval.

Lemma 1: Hilbert Cube Representation. The variables G, Y , Z, A and W , all stochastic

integrals of these variables, and all action mappings σ are representable on the Hilbert cube H∞,

and all variables and probability functions of these variables are Borel-measurable.

Proof : There are two ways to demonstrate this result. The first and simplest is to constrain

XILL itself to the unit interval, as inXILL = 1. Then the entire outcome space is (0, 1). The second

and more general is to assume X to be a topologically complete, separable space with probability

measure P (X). Then by Urysohn’s theorem (BS, Proposition 7.2) there exists a homeomorphism

ρ : X → H , such that P (X) is topologically separable and complete (BS, Proposition 7.23), and

P (X) is itself a Borel space. We can then characterize the σ-algebra BP (X). Then the binary

variables G, Y , Z, A and W are all Borel measurable, as are any convex combinations of those

variables. Let all probability functions (cdfs) and probability density functions (pdfs) for G, Y , Z,

A and W be Borel-measureable functions on X – this is astraightforward for Beta and Bernoulli

variates – then (BS, Proposition 7.29) all integrals and stochastic integrals are Borel-measurable.

Proof of Comment 1

The agent observes Zt, not Yt. The naive agent confuses the two entirely, while the more

sophisticated agent knows that λ > 0 when this is the case but does not know the exact value of

λ. Then

Et [Zijt] = Et

[
XILL

ij [1 −Aijt]
]

= XILL
ij

[
1− (1− λij) γij − λij γ̂

felt
ijt

]

The behavior of the “felt” estimate in the τth period can be described as
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E0

[
γ̂felt

ij,t=τ

]
=

m+XILL
ij

[
τ (1 − λij) γij + λ

(∑τ−1
t=0 γ̂

felt
ijt

)]
n + τXILL

ij

=
m+XILL

ij

[
τ (1 − λij) γij + λ

(∑τ−1
t=0

(
γ̂felt

ijt − γij

)
+ γij

)]
n + τXILL

ij

=
m+XILL

ij

[
τγij + λ

(∑τ−1
t=0 ψ

felt
ijt

)]
n+ τXILL

ij

(6a)

where ψfelt
ijt is the error of the felt estimate at time t. The long-run behavior of the felt estimate

will then depend upon the convergence (if any) of the series
{
ψfelt

ijt

}
. The difference between the

optimal Bayes estimate of γ̂∗ijt and the felt Bayes estimate γ̂felt
ijt can be expressed in terms of the

“observables” Yt and Zt.

γ̂∗ij,t+1 = 1 − (n−m) +
∑
Yijt

n+ tXILL
ij

(7)

γ̂felt
ij,t+1 = 1 − (n −m) +

∑
Zijt

n+ tXILL
ij

First, there is expected bias for any finite time t.

γ̂
felt
ij,t+1 = γ̂∗ij,t+1 + ψ

felt
t

1 − (n−m) +
∑
Zijt

n + tXILL
ij

= 1 − (n −m) +
∑
Yijt

n+ tXILL
ij

+ ψfelt
t

1 − (n −m) +
∑
XILL

ij (1 −Aijt)
n+ tXILL

ij

= 1 − (n −m) +
∑

ijt X
ILL
ij (1 −Gij)

n+ tXILL
ij

+ ψfelt
t

From this we can conclude that

ψfelt
t =

∑
XILL

ij

(
λij

∑
At

[
γij, λij, γ̂

felt
ijt

]
− λij

∑
Gij [γij]

)
n+ tX

(8)

The expected bias for any time t+ τ is

Et

[
ψfelt

τ

]
=
τXILL

ij

[
λij

(
γ̂felt

ijt − γij

)]
n + τXILL

ij

(9)
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The agent’s estimate γ̂felt
ijt is unbiased if λij = 0 or under the knife-edge condition that γij =

γ̂felt
ijt , where in other words the agent just happens to believe that the curing power of the pill is

exactly that of the real treatment. As µij0 is a Beta variate and γ̂felt
ijt a Beta variate, this event has

Lebesgue measure zero for any t.

To consider the asymptotic distribution of bias, we conduct a first-step analysis. Consider the

felt estimate for any two periods t and t+ 1.

E
[
γ̂felt

ij,t+1

]
= 1 − (n −m) +

∑
Zijt

n+ tXILL
ij

= 1 − (n −m) +
∑
XILL

ij {1 − (1 − λij)Gij [γij] − λijWt [Et [γij]]}
n + tXILL

ij

Let mt and nt denote the observed number of ”successes” and ”trials” at time t. Then consider

the movement of the estimate during the next two period t + 1 and t + 2. Again by the law of

iterated expectations,

E
[
γ̂

felt
ij,t+1

]
= E

[
1 − (nt −mt) + Zijt

nt +XILL
ij

]

= 1 −E

(nt −mt) +XILL
ij

(
1 − (1 − λij) γij − λij

[
Efelt

t [γij]
])

nt +XILL
ij


1 −

(nt −mt) +XILL
ij

(
1 − (1 − λij) γij − λij

mt
nt

)
nt +XILL

ij

Then for period t+ 2,

E
[
γ̂felt

ij,t+2

]
= E

[
1 − (nt −mt) + Zijt + Zij,t+1

nt + 2XILL
ij

]

= 1 −E

[
(nt −mt) + 2XILL

ij (1 − (1 − λij)Gijt [γij]− λijWt [Et [γij]])
nt + 2XILL

ij

]

= 1 −
(nt −mt) + 2XILL

ij

1 − (1 − λij) γijλij

1 −
(nt−mt)+XILL

ij

(
1−(1−λij)γijλij

mt
nt

)
nt+XILL

ij


nt + 2XILL

ij

Then when initial beliefs are “high,” or γ1j <
mt
nt

, a sufficient condition for convergence is that

the difference E
[
γ̂felt

ij,t+2

]
− E

[
γ̂felt

ij,t+1

]
tends asymptotically downward, or, ∀t
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Qt,t−1 =
mt +XILL

ij

[
γ + λ

(
mt
nt

− γ
)]

nt +XILL
ij

− mt

nt
< 0. (10)

This occurs iff γ < mt
nt

, which is true by assumption. The opposite case has a symmetric proof.

For efficiency, we examine the variance with which γ̂felt
ijt converges to γij. For the optimal

estimate γ̂∗ijt, for m
n > γ, the τ -th-period error is

ψ∗
τ =

m+
∑τ−1

t=0 Gijt

n + τ
− γij

From this we can write the time-τ posterior variance of the optimal estimator as V arpost
τ [γ̂∗τ ].

Because Gijt is stationary, E [ψ∗
τ ] = m+τγ

n+τ − γij, and lim
τ→∞ψ

∗
τ = 0. The rate of change of the

expected estimate is nγ−m

(n+τ )2
.

From equation (3), we can write

V arpost
τ

[
γ̂felt

τ

]
= V arpost

τ [γ̂∗τ ] + λV arpost
τ

[
ψfelt

τ

]
Because the rightmost term is strictly positive for any λ > 0 and any τ > 0, the posterior

variance for the felt estimate exceeds that for the estimate where λ = 0, and the Comment is

proved.

Comment 1: The Case of Sophisticated Placebo Learning.

We can discuss the the movement of the bias of the agent’s estimate in a way analogous to that

of the naive
(
λj = 0

)
case. For these purposes, it will be convenient to define the error of the

self-conscious agent’s estimate of λ as follows.

ελ ≡ λij − λj

Iterating expectations, the expected bias behaves as does

Et

[
ψ

λj
τ

]
= Etλ [γ̂ijτ ] −E∗

t [γ̂ijτ ]

= Etλ

1 − (n −m) +XILL
ij

∑
Z

λj

ijt

n + τXILL
ij

−E∗
t

(
1 − (n−m) +XILL

ij

∑
Yijt

n + τXILL
ij

)

= Etλ

m+XILL
ij

∑
A

λj

ijt

n + τXILL
ij

 −E∗
t

(
m+XILL

ij

∑
Gijt

n+ τXILL
ij

)

=
ελ

(
τ−1 ∑τ

t=0 γ̂
felt
ijt − γ

)
τ

n + τ
(11)
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There are three cases. Once again perfect estimation of the placebo effect (ελ = 0) eliminates

bias. Above-average placebo response (ελ > 0) induces positive bias whereas below-average placebo

response may induce negative bias.

Proof of Comment 2.

γ̂felt,W
ij,t+1 = γ̂∗ij,t+1 + ψfelt,W

t

1 − (n−m) +
∑
ZW

ijt

n+ tXILL
ij

= 1 − (n−m) +
∑
Yijt

n + tXILL
ij

+ ψfelt,W
t

Dropping sub- and superscripts for XILL
ij , this leads to

ψfelt,W
t =

∑
XAijt +

∑
XWijt −∑

XAijtWijt − ∑
XGijt [γij]

n+ τX
(12)

where all sums are over the sequence t = 0, ...τ .

Of the variables in (12), only Gijt is stationary, making computation of expectations difficult.

We can perform a first-step analysis by describing the expected movement of the variable γ̂felt,W
ijt

in the first few periods. Start in an arbitrary period t, where priors are given my mt and nt.

By iterated expectations, the period 1 expectation of the period t + 2 felt curing estimate with

self-limitation is

E1

[
γ̂

felt,W
ij,t+1

]
=
mt +XILL

ij

{
(1 − ωijt)

[
(1 − λij) γij + λij γ̂

felt,W
ijt

]
+ ωijt

}
nt +XILL

ij

Now define by QW
t,t+1 the differential movement of the felt curing estimate with self-limitation.

This is

QW
t,t+1 =

XILL
ij

{
(1 − ωijt)

[
(1 − λij) γij + λij γ̂

felt,W
ijt

]}
+XILL

ij

(
ωijt − γ̂felt,W

ijt

)
nt +XILL

ij

=
XILL

ij (1 − ωijt) α̂ijt +XILL
ij

(
ωijt − γ̂

felt,W
ijt

)
nt +XILL

ij

There are two cases. The source of the bias may be seen in the expression for ψt, namely that

where γ̂felt
t > γij, ψt is a submartingale and a supermartingale in the opposite case. Consider

again the quantity

Qt,t+1 =
XILL

ij

{
(1 − ωijt)

[
(1− λij) γij + λij γ̂

felt,W
ijt

]}
+XILL

ij

(
ωijt − γ̂felt,W

ijt

)
nt +XILL

ij
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If any of the four conditions in Comment 2 holds, Qt,t+1is monotone increasing. The fact

that γ̂felt,W
ijt cannot surpass one establishes the existence of an upper bound upon Qt,t+1, which is

sufficient for weak concavity of the series.

To show asymptotic inconsistency of γ̂felt,W
ijt under the four conditions, we begin with the

observation that, for all t, ψfelt,W
t is absolutely monotonic in QW

t,t−1. Since QW
t,t−1 is bounded and

monotone, then ∀Hfelt,W
t , there exists some lim inf ψfelt,W

t

(
Hfelt,W

t

)
. We can characterize the

infimum by

inf ψfelt,W
t = inf

∑
XAijt +

∑
XWijt −∑

XAijtWijt −∑
XGijt [γij]

n+ τX

≤
(
1− ωmax

ij

)
α̂felt,W

0 +
(
ωmax

ij − µij0

)

The last expression is guaranteed positive by assuming any of the four conditions. Because

lim inf is an increasing series in t, then for some infinitesimal ε, lim inf ψt

(
Hfelt

t

)
=

(
1 − ωmax

ij

)
α̂felt,W

0 +(
ωmax

ij − µij0

)
− ε. By Fatou’s lemma,

∫
lim inf ψt

(
Hfelt

t

)
+ ε ≤ lim inf

∫
ψt

(
Hfelt

t

)
+ ε

and so(
1 − ωmax

ij

)
α̂felt,W

0 +
(
ωmax

ij − µij0

)
≤ Et

[
lim inf ψt

(
Hfelt

t

)]
≤ lim inf Et

[
ψt | Hfelt

t

]

Proof of Comment 3 We first characterize the movement of Wijt within cycles. In cycle 1,

ω1
jt moves from zero to ω1

j . In cycle 2, ω2
jt moves from zero to ω2

j . And for cycle c, ωc
jt moves

from zero to ωc
j . We let learning stop, sickness remit completely (XILL = 0), and utilization stop,

when ωc
jt reaches ωc

j. By Comment 2, with its conditions (a)-(d) assumed, E
c,
⋃

Hfelt,W
1t

[
γ̂felt,W,c=1

ijt

]
moves from γ1j to a quantity E

c,
⋃

Hfelt,W
1t

[
γ̂felt,W,c=1

ij,t=t
ω1

j

]
, such that

E
c,
⋃

Hfelt,W
1t

[
γ̂

felt,W,c=1
ijt

]
−E

c,
⋃

Hfelt,W
1t

[
γ̂

felt,W,c=1
ij,t=t

ω1
j

]
> 0 (13)

But since γ̂felt,W,c
ij0 must be altered across cycles in accordance with Bayes’ rule, the Bayesian

human agent takes

γ̂felt,W,c=2
ij,t=0 ≡ γ̂felt,W,c=1

ij,t=t
ω1

j

> 0

Taking conditional expectations and using (13),
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E
c,
⋃

H
felt,W
1t

[
γ̂felt,W,c=2

ij,t=0

]
≥ E

c,
⋃

H
felt,W
1t

[
γ̂felt,W,c=1

ij,t=0

]
and the first statement in Comment 3 is proved, as c = 1, 2 are arbitrary. For the second

statement, note that by repeated application of (13),

lim
c→∞ inf E

c,
⋃

Hfelt,W
1t

[
γ̂felt,W,c

1j0

]
≥ γ1j

By (13), the inequality is strong iff there exists one cycle for which the movement is strictly

positive across cycles. As c gets large, the event that no such cycle has occurred has vanishing

measure. The second statement is proved.

A stronger result is possible, namely that

lim
c→∞Ec,

⋃
H

felt,W
1t

(
lim

ωjt→ωr
j

inf γ̂felt,W,c
i jt

)
= ωj (14)

where limits are computed right to left.

Lemma 2. Existence of an Optimal Policy.

Proof. SKETCH: The problem here fits into a general class of models that have been analyzed

by Gittins, Gittins and Jones, Berry and Fristedt, and Banks and Sundaram (see references). To

show existence of an optimal utilization path, notice that for any t, the cost-continuation array of

possible choices is limited to the Hilbert cube, by Lemma 1.

Note that the cost function, being linear, meets the lower right-hand corner of each array. Then

any non-decreasing and monotonic continuation value must cross the cost function once and only

once. Since the continuation value used here is linear, this is sufficient to show a single-crossing

property. Hence the optimum is unique.

Because the unbiased Bayes estimate of γ is Markov (or is assumed Markov by the human agent

even when, by placebo effects, it is semi-Markov), standard approaches to the optimal stopping of

Markov processes (e.g., Shiryaev 1970) may be employed. Note, however, that while γ̂∗t is fully

Markov, γ̂felt
t is not (though it has a Markovian component). That is, if a fully rational agent

knew that γ̂felt
t was driving the inference process, she would not apply standard optimal stopping

approaches for Markovian processes to the problem.

Lemma 3: Existence of Histories Generating Optimal Abandonment of the Incum-

bent. Let −→
A τ =

∑t
τ=0 Aijt denote the sum of observed responses (pharmacological or placebo) to

time t. We first demonstrate the existence of histories Ht(
−→
A τ ) that induce abandonment of the

therapy [σ∗t (Ht(
−→
A τ )) = 0|σ∗t−1(Ht−1(At−1)) = 1]. [Note that the incumbent therapy can always be
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abandoned in favor of another unknown (σt = q). By substituting the known value of the prior cur-

ing value for the “next-best” treatment for the value of the default in what follows, abandonm,ent

of the incumbent in favor of any other available treatment follows without loss of generality.) For

any period t, optimal abandonment occurs when the continuation value falls below the value of the

default, or V 1
t = f1

t (λ1) + δ
∫
� F

1
t+1(γ, λ1)dµ(γ) < η = αXILL−k0

1−δ . Note first that V 1
t

(−→
A τ

)
is an

increasing function of m+
−→
A τ

n+t , and that m+
−→
A τ

n+t is strictly decreasing for any failure. Consider then a

large sequence of experiments {Aχ
t }, with occasional successes but dominated by failure, such that

lim sup
t−→∞

V 1
t

(−→
A τ

)
−→ χ, with χ an infinitesimal positive quantity (χ < m

n < η). Then {Aχ
t } has

first-order stochastic dominance over a sequence
{
A0

t

}
for which lim sup

t−→∞
V 1

t (At) −→ 0. Because

V 1
t

(−→
A τ

)
is monotonic in m+

−→
A τ

n+t ,
{
A0

t

}
must exist (though it may have Lebesgue measure zero,

or negligible probability). [It can be shown, however (Billingsley 1995: Theorem 19.1), that any

sequence with this property has at least one convergent subsequence that behaves the same.] Now

assume the contrary: subjectively optimal abandonment never occurs. This requires, ∀
(
t,
−→
A τ

)
,

inf
0<t≤∞

f1
t

(−→
A τ

)
> η . This condition is of course violated for any sequence

{
A0

t

}
. But then choose

any sequence {Aχ
t } for which 0 < χ < ηand for which

(
m
n − χ

)
> χ. Then the path {Aχ

t }, which

has positive probability and greater likelihood than
{
A0

t

}
, yields lim sup

t−→∞
V 1

t

(−→
A τ

)
< η.

We now turn to singularity of σ∗t = 0, namely that for any period t, one and only one value of

σ∗t = 0 exists. It is sufficient to show that, no matter how refined the type space, only one type

can abandon in each period. Let tσ
∗
t =0 be the first period in which abandonment (by type Aσ∗

t =0
t

) occurs. For the T = ∞ case, this cannot be the first period, else no utilization could ever occur.

So tσ
∗
t =0 must have been preceded by a period in which experimentation occured and in which

f1
t

(
AW

t−1

)
> η . Let Aσ∗

t =0
t−1 be the ”do-or-die” type in this previous period – i.e, the type which

must succeed or get abandoned – of which there is only one possible such type, by the construction

of the Beta distribution. Then with probability mt
nt

type Aσ∗
t =0

t−1 observes a clinical response, and

by the monotonicity of f1
t

(−→
A τ

)
, this type (Aσ∗

t =0
t−1 + 1 ) must consume at tσ

∗
t =0 (else she would

have abandoned at tσ
∗
t =0 − 1 ). With probability (1 − mt

nt
) type Aσ∗

t =0
t−1 fails and exits the game.

So only one type abandons at tσ
∗
t =0. But then the successful Aσ∗

t =0
t−1 is the worst remaining type,

and for some tσ
∗
t =0 + j (perhaps j = 1 ) there exists one type Aσ∗

t =0
t−1 + 1 , having failed in every

period thereafter, which faces a do-or-die experiment again. But this is structurally equivalent to

the experiment at tσ
∗
t =0; hence only one type can withdraw at tσ

∗
t =0 + j . But j is arbitrary. Since

the spread between any types is

m+(AW
t+j+1)

n+t
σ∗

t
=0

+j
−

m+

(
A

σ∗
t =0

t +1

)
n+t

σ∗
t
=0

 , which is non-increasing in j , this

is true for type space of any positive refinement. QED.

Lemma 4. For any two treatments 1 and q, the subjectively expected value of the first is superior

to that of the second if, conditioning upon state variables and parameters, its subjectively expected
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continuation value has first-order stochastic dominance over that of the second.

Proof. By definition, the value of the alternative is greater if

fσt=1
t (γ̂1jt, λ) + δ

∫
�
Fσt=1

t+1 (γ̂1jt, λ)dµ(γ) ≥ fσt=q
t (γ̂qjt, λ) + δ

∫
�
Fσt=q

t+1 (γ̂qjt, λ)dµ(γ)
(15)

It is immediate that a sufficient condition for (15) to be true is that each left-hand side com-

ponent of 15 has first-order stochastic dominance over its respective right-hand side component.

Or

fσt=1
t (γ̂1jt, λ) FOSD fσt=q

t (γ̂qjt, λ)

and

∫
�
Fσt=1

t+1 (γ̂1jt, λ)dµ(γ) FOSD
∫
�
Fσt=q

t+1 (γ̂qjt, λ)dµ(γ)

Proof of Comment 4. The “truth” is γ̂felt,W
1,t XILL

j − k1 +
∫
f1
t+1 (γ)µ (dγ) ≤ γ̂felt,W

χ,t XILL
χj −

kχ +
∫
� f

χ
t+1 (γ)µ (dγ). We seek the conditions under which σt = 1 when this is the case, and

the (first-order) characteristics of the limiting distribution for this utilization path. The disguised

default has γ̂felt,W
χ,t XILL

χj − kχ +
∫
� f

χ
t+1 (γ)µ (dγ) = η. Then expressed in terms of the functional

relation, the human agent errs if(
γ̂felt,W

1,t XILL
j − k1

)
+ δ

∫
�
f1
t+1

(
γ̂felt,W

1,t XILL
j − k1

)
µ (dγ) <

(
βXILL

j − k0

)
+

δ

1 − δ

(
βXILL

j − k0

)
Because

∫
� f

1
t+1

(
γ̂felt,W

1,t XILL
j − k1

)
µ (dγ) is increasing in γ̂felt,W

1,t , then for any stopping period

τ this occurs if

XILL
(
γ̂felt,W,c

1jτ − β)
)
> k1 − k0 > XILL (γ1j − β))

If this condition holds, then we know from Lemma 3 that the incumbent would be abandoned

by a human agent not subject to placebo learning. The placebo-learning agent would, however,

continue to utilize the incumbent treatment if (15) held subjectively. By Lemma 4, this condition

holds for any incumbent such that XILL
[
lim inf ψfelt,W

1jt

]
> k1 − k0. By Comments 1 - 3, the cost

differential k1 − k0 can always be chosen small enough that this holds for any λ1j > 0.

To see that the probability of a Type I error is increasing in λ1j, consider the probability that

(15) holds when k1 − k0 > XILL (γ1j − β)). The probability that (15) holds is increasing in its

left-hand functional components. By Comments 1 and 2, for any λ1
1j > λ2

1j,
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fσt=1
t (γ̂1jt, λ

1
1j) FOSD fσt=1

t (γ̂1jt, λ
2
1j)

and

∫
�
Fσt=1

t+1 (γ̂1jt, λ
1
1j)dµ(γ) FOSD

∫
�
Fσt=1

t+1 (γ̂1jt, λ
2
1j)dµ(γ)

Then by Lemma 4, Pr
[
sup ΦI,B

t

(
Hfelt,W

t

)
= 1

]
> Pr

[
sup ΦI,B

t (Ht|λ1j = 0) = 1
]

follows as

a special case. By Comments 1 and 2, again, lim supφI,B
1jt

(
H

felt,W
t

)
≥ limsupφI,B

1jt (Ht|λ1j = 0).

QED.

Proof of Comment 5. Again the “truth” is γ̂felt,W
1,jt XILL

j −k1+
∫
� f

1
t+1 (γ)µ (dγ) ≤ γ̂felt,W

χ,t XILL
χj −

kχ +
∫
� f

χ
t+1 (γ)µ (dγ). By Lemma 4, the agent still chooses the incumbent if

fσt=1
t (γ̂felt,W

1jt , λ1j) FOSD fσt=χ
t (γ̂χjt, λ1j)

and

∫
�
Fσt=1

t+1 (γ̂felt,W
1jt , λ1j)dµ(γ) FOSD

∫
�
Fσt=χ

t+1 (γ̂χjt, λ1j)dµ(γ)

Because utilization of the incumbent and the sugar pill are both subject to placebo learning,

these conditions hold for any value of the default treatment. From Comment 1 the expected τ -th pe-

riod bias for the “felt” estimate γ̂felt,W
1jt is weakly increasing in γ̂1j0. Then Pr

[
sup ΦI,χ

iτ (Hτ |γ̂1j0 = 0) = 1
]

is weakly increasing in γ̂1j0, and for any γ̂1j0 > γ̂2j0, lim supφI,χ
ijτ

(
Hfelt

τ |γ̂1j0

)
≥ lim supφI,χ

2jτ (Hτ |γ̂2j0).

QED.

Proof of Comment 6. The “truth” is

Pr

[
sup
t→τ

∑
t

Y1jt > ξj

]
δE[τ ]Dj > and Pr

[
sup
t→τ

∑
t

Zfelt,W
1jt > ξj

]
δE[τ ]Dj

The agent still utilizes the incumbent if she subjectively perceives that

Pr

[
sup
t→τ

∑
t

Y1jt(σt = q∗) > ξj

]
δτreal

Dj +
τreal∑
t=0

δt(Y1jt(σt = q∗) − kq∗) <

Pr

[
sup
t→τ

∑
t

Zfelt,W
1jt (γ̂felt,W

1jt ) > ξj

]
δτfelt

Dj +
τfelt∑
t=0

δt(Z1jt(γ̂
felt,W
1jt ) − k1)
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The likelihood of this inequality isincreasing in the right-hand side functional components

{Zfelt,W
1jt }. By Comments 1 - 3, the relation Pr

[
sup
t→τ

ΦI,D
τ

(
Hfelt,W

τ

)
= 1

]
> Pr

[
sup
t→τ

ΦI,D
τ (Hτ |λ1j = 0) = 1

]
holds as a special case, and the second statement follows. QED.

Proof of Comment 7. Note that to rule out trivial cases, (15) must be satisfied. By

Comments 1-3 and Lemma 4, under this condition or any other in which µij0 > γ, the series

{Aijt|λij > 0} has first-order stochastic dominance over the series {Aijt|λij = 0} = {Gijt}. For

any large series,

Pr
[
inf ΦI

(
H

felt
t

)
= 1

]
= 1 (16)

by a Borel-Cantelli limit. But if λij = 0, then α̂ijt = γ̂∗ijt and Type I error occurs only through

sampling error. For any finite series, let the probability of abandonment be

Pr
[
V 1

t

(
At

(
H i

t

))
< η

]
= Πt

(
V 1

t

(
At

(
H i

t

))
< η

)
=

∫ τ

0
πt

(
V 1

t

(
At

(
H i

t

)))
dA. (17)

From Comment 3, we know that V 1
t

(
At

(
H i

t

))
is monotonic in At. But because of the first-order

stochastic dominance of {A1jt|λ1j > 0} over {A1jt|λ1j = 0},

Πt

(
fσt=1
t (γ̂1jt, λ1j = 0) + δ

∫
�
Fσt=1

t+1 (γ̂1jt, λ1j = 0)dµ(γ)
)
>

Πt

(
fσt=1
t (γ̂1jt, λ1j > 0) + δ

∫
�
Fσt=1

t+1 (γ̂1jt, λ1j > 0)dµ(γ)
)

To see that this result holds identically for a set of equivalent histories (HΨ
t ), note that since

−→
A τ is a sufficient statistic for all HΨ

t , then ∀H i ∈ HΨ, i = 1, 2...Ψ′, πt

(
V 1

t

(−→
A τ

(
H1

t

)))
=

πt

(
V 1

t

(−→
A τ

(
H2

t

)))
= · · · = πt

(
V 1

t

(−→
A τ

(
HΨ′

t

)))
, i.e., the density is the same for all histories.

But then∫ τ

0
πt

(
V 1

t

(−→
A τ

(
H1

t

)))
=

∫ τ

0
πt

(
V 1

t

(−→
A τ

(
H2

t

)))
dA = · · · =

∫ τ

0
πt

(
V 1

t

(−→
A τ

(
HΨ′

t

)))
dA

(18)

the cumulative distribution function is also identical.

This proves the first statement. For the second, notice that whenever the first-order stochastic

dominance condition is satisfied, then by Comments 1 and 2, lim inf Πt

(
Hfelt

t

)
≥ lim inf Π∗

t (Ht|λij = 0).

For initial beliefs, note that by Comments 1-4, the path of optimal utilization is non-decreasing

in Qt,t−1. For any t, the quantity Qt,t−1 is an increasing function of µij0, by Comments 1 and 2.

Since no positive Qt,t−1 can generate optimal abandonment, utilization is nondecreasing in µij0.
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