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Abstract

Deadlines are ubiquitous institutions in government decision making, constraining both agencies and

courts. Yet these institutions are almost entirely ignored in formal models in institutional political sci-

ence. We analyze deadlines as exogenously imposed institutions upon a government decision maker, as

a means of elected officials exercising control over the the duration of administrative decision processes.

Our formal model demonstrates how deadlines are successful at lowering the time to administrative de-

cision. Yet our analysis also illuminates the unappreciated pitfalls of deadlines, or their “downside.” The

effect of deadlines on regulatory behavior is highly non-linear, making imposition of deadlines a difficult

task for even highly rational agents. Further, our model predicts that deadlines will increase the variance

in the review time distribution under a large set of conditions and predicts that deadlines will increase the

error rate in regulatory behavior, often in an exponential fashion. Our formal analysis helps to explain

an expanding set of empirical findings about the effects of deadlines and suggests some of the limits of

deadlines as an effective tool of control over policymaking and bureaucratic decisions.
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1 Introduction

Because politicians or bureaucratic superiors wish to limit administrative and regulatory delay, they often

impose deadlines of one form or another upon agencies and other government actors. Deadlines for decision

making are a common feature of the judicial realm (Abbott, 1987), and in recent decades deadlines have also

governed administrative rulemaking (Gersen and O’Connell, 2008) as well as regulatory decisionmaking in

numerous areas (Gersen and O’Connell, 2008; O’Connell, 2008). Recent empirical work, moreover, has

demonstrated that deadlines influence the timing and duration of regulatory decisions (Carpenter, Zucker

and Avorn, 2008; Gersen and O’Connell, 2008; Yackee and Yackee, 2008), and has also presented evidence

of an association between just-before-deadline approval decisions and subsequent drug safety problems in

the arena of pharmaceutical regulation (Carpenter, Zucker and Avorn, 2008).

In this article we provide a theoretical explanation for these relationships, and we point theoretically to

several features of deadlines that analysts have not considered. To analyze the effects of deadline bonuses

on government decision making, we develop a model of case review by a dynamically rational but uncertain

agent. A deadline policy is conceived as a time for decision combined with a bonus for meeting it (or a

penalty for missing it). For example, this is the policy used to govern drug review by regulatory agencies

in the United States and European Union. Some of the results of the model are expected and not entirely

surprising. We show that deadline bonuses are likely to decrease the review time of cases, and that the

regulator’s error rate (the tendency to approve cases that should not have been approved) is increasing in the

size of bonus offered.

Yet analysis of our model generates several results that run counter to popular intuition and previous

research. We show, for instance, that deadlines can increase the variance of government decision making

even when their mean effect is one of acceleration. This is not an isolated or knife-edge occurrence but

occurs under a wide range of plausible parameter values for the model. In other words, deadlines can make

government decisions less predictable, not more so. Second, the induced error rate from deadlines may be

nonlinearly (exponentially) increasing in the size of the bonus offered for meeting the deadline, in ways that

are highly complex and probably both unobservable and unpredictable. These considerations suggest that

deadlines are quite possibly an effective but problematic tool for political control; political authorities may

not know exactly “what they are getting” or “what they are getting into” when they impose deadlines upon

administrative agents. This notion has implications for further theoretical and empirical study of govern-
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ment decision making and bureaucratic politics, and is an issue to which we return in the conclusion.

Our analysis also has broad methodological implications for the empirical analysis of government deci-

sion making and regulatory review. Specifically, we show that deadlines cause a discontinuity in the hazard

rate of product approval. This discontinuity causes large biases in the estimates of coefficients if parametric

or semi-parametric methods are applied to the review process (as in Carpenter 2002; Whitford 2005; Kosnik

2006). Hence some of the more commonly studied duration processes in political science and related social

sciences may require re-examination through more nuanced statistical models that include the presence of

deadlines, even if the deadlines are “soft” or only partially binding as normative guidelines to decision mak-

ing.

As with all such theoretical efforts, our model has some basic limitations, most of which follow from the

fact that the model is developed for a continuous-time, continuous state, decision-theoretic context. Hence

the first limitation of our model is that it is not game-theoretic and does not analyze the possibility of con-

tinuous interaction between the government decision maker (as an agent) and the elective institution (say

Congress or the President, as a principal) over time. Such an analysis might reveal important learning dy-

namics and adaptation by both players. Yet one vital response to this objection is that if decision-theoretic

analysis of modern government decision making yields rather daunting complexities – and we demonstrate

below that it does – then fully strategic equilibrium behavior in a game-theoretic world is likely (though

perhaps not certain) to add even more. Second, the sort of complex, non-linear effects we show to be as-

sociated with deadlines are unlikely to be fully anticipated by either principals or agents themselves in a

strategic setting. Indeed, the modeling of agents as fully dynamically rational and both attentive and faithful

to continuation values is asking much of any human agent (Berns, Laibson and Loewenstein, 2007); our

model adds a realistic but complex stochastic process along with institutional context. Finally, if a fully

strategic context were to be adopted, then the analysis would be vastly more complex and quite likely unre-

solvable analytically; at the very least, it would need to be conducted in the still-evolving and limited field

of differential games.

2 Deadlines in Administrative Practice and in Scholarly Analysis

The prospect that government decision makers can delay implementation or choice makes the problem of

political control all the more challenging. Not surprisingly, the duration of government decision making

has become a source of increasing scholarly analysis (Carpenter, 2002; Whitford, 2005; Kosnik, 2006). A
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common institutional procedure adopted to address the problem of administrative delay is the imposition of

a deadline upon government agents. Deadlines – rules that specify a maximal length of time for a decision

or case review to be taken and an associated reward for meeting the maximal time (or penalty for missing it)

– would appear to be widespread in institutional politics.1 Congress uses deadlines and statutory hammers

to produce quicker action in a wide variety of delegation decisions (Abbott, 1987), including environmental

regulation (Morgenstern, 1993) and national traffic safety regulation (Mashaw and Harfst, 1990, 69-83).

The Environmental Protection Agency (EPA), for instance, is given a set amount of time to issue standards

for certain toxic substances or pollutants under its enabling legislation, and it is also charged with revisiting

its decisions every five to seven years. The 1998 amendments to the Federal Insecticide, Fungicide and Ro-

denticide Act to re-register 700 substances within a period of ten years (each registration and re-registration

is separate, costly and time-consuming) (Morgenstern, 1993, 245). In recent years, congressional statutes

have charged the FDA with meeting deadlines of six months for the review of more therapeutically vital

“priority” drugs and (since 1997) ten months for most other drug reviews. Other health regulators world-

wide – including the European Medicines Evaluation Agency (EMEA) – have adopted similar regulatory

review deadlines.

The emerging literature on deadlines in government decision making is small but has generally found

that deadlines do indeed accelerate administrative decision processes. Two recent comprehensive analyses

of deadlines in the study of rulemaking by U.S. government agencies, by Gersen and O’Connell (2008) and

by Yackee and Yackee (2008), have both produced general evidence for the proposition that deadlines in-

duce quicker decisions by federal administrators charged with rulemaking. And a recent study of deadlines

in drug regulation (Carpenter, Zucker and Avorn, 2008) shows evidence for acceleration of FDA review

times and for increased error rates associated with the drug review deadlines.

In the social sciences more generally, previous formal and experimental studies of deadlines have been

conducted largely in the setting of negotiation (e.g., Fershtman and Seidmann 1993; Stuhlmacher and Cham-

pagne 2000; Gneezy et al. 2003; Moore 2004). The analysis of delay in formal models of negotiation is

useful but also compromised by the fact that most such models focus on stationary equilibria where the his-
1In some cases, deadline institutions impose a more smoothed penalty or reward structure, such as the practice of a one-third or

one-half-grade reduction “for every day late” used in the grading of papers or assignments at schools and universities. Because our
analysis focuses upon political and administrative decisions, where discrete payment structures are used most commonly, we do not
explore smoothed bonus payments in this model. Discrete payment/penalty structures correspond to the form of deadlines used in
American and European regulation of drugs, medical devices and food additives, as well as to deadline structures in administrative
rulemaking and judicial arenas.
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tory of previous bargaining does not matter to present bargaining.2 Where formal models have relaxed the

stationarity assumption, they have assumed complete information or have incorporated a very limited notion

of uncertainty (e.g., Fershtman and Seidmann 1993, 307, 309). The same can be said for many experimental

studies of deadlines, which either focus on negotiation or incorporate very limited structures of uncertainty

and information (e.g., Moore 2004). Since much of government decision making involves learning about

an uncertain environment, these models sacrifice what is perhaps the major focus of interest for students of

institutions and policy.

It is the combination of learning over time, uncertainty and deadlines, then, that is of interest to so many

students of political decision making, administrative law and politics, and public policy. Yet the combina-

tion of (a) general uncertainty with both (b) dynamic choice and (c) deadlines seems to have eluded both

the world of theory and the world of empirics. We now turn to elaborate a model which contains all three

elements.

3 A Generalized Dynamic Model of Government Approval

The model analyzed in this paper builds upon and generalizes prior literature on continuous-time learning in

government decision-making. The agent is faced with a learning problem, where the quality and danger of a

product or “case” submitted for judgment or approval are unknown quantities (Carpenter, 2004, 2002). The

regulator wants to approve a case when the stochastic payoff from doing so outweighs the (1) the stochastic

danger of the case and (2) the value of waiting for more information.

3.1 Incentives for Irreversibility, Including Reputation Protection

Our model presumes that the government decision maker perceives approval as irreversible or reversible

only at significant cost. In the drug approval case, for instance, the regulator’s primary objective when

deciding to approve a new drug may be to protect her reputation (Carpenter, 2004). A reputation-protecting

pharmaceutical regulator may wish to ensure that the rate of adverse safety events associated with a new

drug is not materially different from the rate of adverse events associated with other drugs in the same

therapeutic class. An agency promulgating a new rule may worry that its decision will be associated with

highly publicized mistakes or disasters later on, problems that could have been anticipated by “signals” in
2In other words, the customary restriction to examining stationary equilibria means that the set of offers

that players can either make or accept in any subgame is independent of the history of previous (rejected)
offers which generate the status quo subgame; see Fershtman and Seidmann 1993.
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the agency’s evidentiary record. In these cases, the agent’s task is to disentangle the information about a

case’s quality from the information provided about its danger, and to process both “quality” signals and

“danger” signals while not suboptimally delaying the decision.

3.2 Notation and Assumptions

While generally conceived, one can use the running example of approval regulation of pharmaceuticals

to make the following model more concrete. Under this specific rendering, “cases” may be construed as

“drugs,” “quality” as “efficacy”, and “safety” as the absence of health-related hazards associated with the

case. Let the cases (drugs) under review be indexed by i, let the review time for case i be given by ti with the

time of approval given by tiapp. We suppose that each case is characterized by two parameters: its quality (in

the drug example, its effectiveness in treating the disease) and its danger, or the rate at which that adverse

events occur in association with the case. Suppose that a case’s quality is a draw from a normal distribution,

µi ∼ N (m, s) where N (m, s) represents the normal distribution with mean m and variance s. The actual

value of µi is unknown to the regulator, but is learned during the review process. The danger parameter is

λi ∼ Gamma(α, β).3 The evidence process the regulator observes during the review of cases is an additive

combination of continuous evidence, which we represent as Brownian motion with drift, and a compensated

Poisson process–representing the discrete occurrence of adverse events.

3.2.1 Continuous Time Evidence of quality

The regulator collects continuous time evidence about a case’s quality according to Brownian motion with

drift, where the drift is determined by the (unobserved) quality of the case. Formally, the regulator observes

conti(t, µi, σi) = µit+ σiw(t) (3.1)

where w(t) is a standard normal distribution with mean zero and variance t. As we show below, the parame-

ter σ encodes the amount of information Equation 3.1 contains for the regulator: if σi = 0 then the regulator

can immediately infer the quality of the case by examining the slope of Equation 3.1 and as σi → ∞

Equation 3.1 contains no information about a case’s quality.
3The danger parameter is not assumed known to the regulator at the start of the review process, but it is

assumed that the regulator can form a “baseline” estimate of expected danger (the compensator term in the
model below) and can compute a subjective (not necessarily Bayesian) expectation over the value of danger
signals received.
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3.2.2 Rare Occurrence of Adverse Events

The regulator also weighs the accumulation of danger signals against a baseline rate that serves as an ex-

pected rate of danger. We represent this balancing with a compensated, compound Poisson process, where

the jumps occur in only one direction. In this model the jumps are all downward because the adverse events

decrease the value of the case. Suppose that arrival time of events is exponentially distributed, with pa-

rameter λi. This implies that the number of adverse events that have occurred by time t, J(t), is Poisson

distributed with rate parameter λit. Conditional on an event occurring, we suppose that the size of the

jump is a draw from some distribution G(Z) and suppose that the expected size of this jump is given by

ξ =
∫
<+

ZdG(Z). If G(Z) is degenerate, placing all probability on one value of Z, then the adverse events

arrive according to a standard Poisson process.4 Formally, the compensated compound Poisson process is,

poisi(t, λi, J(t), ξ) = λiξt−
J(t)∑
k=1

Zk (3.2)

3.2.3 Defining the Evidence Process

The regulator observes an additive combination of Equations 3.1 and 3.2,

X(t) = conti(t, µi, σi) + poisi(t, λi, J(t), ξ)

= µit+ σiw(t) + λiξt−
J(t)∑
k=1

Zk (3.3)

Equation 3.3 is an example of a Levy Process: a stochastic process that combines Brownian motion with

Poisson processes. This framework provides a general model for analyzing regulatory behavior, including

as a special case the models in Carpenter (2002) and Carpenter (2004).5 We will collect the path of X(t)

during the regulatory process into the history Hi(t).6

3.3 Estimating quality from Evidence

Given that the regulator only observes X(t) we first prove that the learning problem is identified: the reg-

ulator is able to disentangle the contribution of the quality of the case to X(t) from the value contributed

4Suppose that G(Z) has support for Z > 0. Further, suppose that the first moment exists. Our proofs
require no other assumptions

5The process is pure Brownian motion with drift if λi = 0. Similarly, the process is only a compensated
Poisson process if µi = 0 and σi = 0

6In the appendix we offer a formal statement of the model developed here.
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by Equation 3.2. Lemma 1 shows that this identification is possible and provides sufficient statistics for the

learning problem.

Lemma 1 (Identification of Learning Problem and Sufficient Statistics). Without loss of generality, for any

Xi(t), the history of Xi(t), Hi(t) can be broken into three components: (1) the history of the continuous

component due to Brownian motion with drift, HB
i , (2) the contribution of the compensation of the Poisson

process Hc
i , and (3) the history of the jumps HJ

i . A sufficient statistic for HB
i is the dual (t,Xi(t)∗), where

Xi(t)∗ = Xi(t)− λξt+
∑J(t)

k=1 Zk, a sufficient statistic for HJ
i is (t,

∑Jt
k=1 Zk) and a sufficient statistic for

Hc
i is (t, λiξ)

Proof Proofs of all lemmata and propositions appear in the Appendix.

The regulator can separate the components of Xi(t) because the compensator for the adverse events λiξt is

known and the adverse events occur instantly (on a set of measure zero). During the time when these events

cause the evidence process to jump downwards, the Brownian motion does not move, allowing the agent to

identify movement due to the jumps and movement due to Brownian motion.

Lemma 1 is more than just a technical feature of our model, it captures an important component of regu-

latory dynamics. The rearrangement allows the agent to separate discrete and continuous evidence–much as

a physician could separate more continuous outcome measures such as monthly pain or hypertension mea-

surements from discrete events such as a myocardial infarction or an event that flagged severe hepatotoxicity

(Olson, 1997; Carpenter, 2002). In the review of a dam licensing project by an agency like the Federal En-

ergy Regulatory Commission (FERC) in the United States (Kosnik, 2006; Spence, 1999), a regulator might

separate more continuous measures such as megawatt generation from more discrete outcomes such as fail-

ures or environmental catastrophes. Alternatively, the review of data from nuclear power plants, as part of

an inspection or licensing operation, could include more continuous measurements for energy generation

and rarer, discrete measurements for safety issues (Gordon and Hafer, 2005).

Using Lemma 1 we are able to define the regulator’s posterior estimate of case quality, µ̂i(t), its

variance V (t), and the contribution of the compensated Poisson process to X(t), P (t). To define these

quantities, we first calculate X∗(t) by subtracting the components of X(t) not related to case quality,
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X∗(t) = X(t)− λξt+
∑J(t)

k=1 Zk and (with a slight abuse of notation) call x = X∗(t). Then,

Posterior Mean ≡ E(µi|x) = µ̂i(t) =
(m/s) + (x/σ2

i )
(1/s) + (t/σ2

i )
(3.4)

Varµ̂i ≡ V(t) =
1

(1/s) + (t/σ2
i )

(3.5)

Poisson Process, Time t ≡ P(t) = λiξt−
J(t)∑
k=1

Zk (3.6)

The posterior variance V (t) incorporates the regulator’s uncertainty about the quality of the case, while

P (t) reflects the value from the compensated Poisson process at time t. If P (t) > 0 then there have been

fewer adverse events than expected, while if P (t) < 0, then there have been more adverse events than

expected.

3.4 Filtered Evidence and Value Functions

The agent seeks to define an optimal stopping rule for the filtered evidence process found by combining

Equations 3.4 and 3.6, γ̂(t)i7,

γ̂(t)i = µ̂i + λiξt−
J(t)∑
k=1

Zk. (3.7)

Suppose that there is some convex function γ̂(t)i × t 7→ F (γ̂(t)i, t), that is twice differentiable with

respect to both γ̂(t)i and t. This function is a map from the current state of the filtered evidence process and

time to the value experienced by the regulator.

3.5 Regulatory Objective

The regulator’s objective is to define an optimal rule to stop γ̂(t)i in order to maximize her payoff. Formally

this implies,

max Ee−δ(tapp)

{
A+ Eµ̂,∑Z,t

∫ ∞
t

e−δ(y−t)

[
µ(s, ω)−

Jt∑
k=1

Zk + λi,jξt

]
dy

}

= Ee−δ(tapp)

A+ δ−1

µ∗ [tapp, ω]−
J∗t∑
k=1

Zk + λi,jξt
∗

 (3.8)

7We say that this is the filtered evidence process because the Bayesian estimates of quality identifies the
components of X(t) necessary for estimating the quality–or “filters” the histories to measure the crucial
components.
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where δ is a discount factor, A is an approval payoff which is static, positive and known with certainty

throughout the review.8 The quantities µ∗, t∗, and J∗(t) are the case’s quality, time of approval and the

number of jumps, respectively, at the optimal stopping time, and y is a variable of integration.

3.6 The Optimal Stopping Rule and Its Properties

The regulator’s optimal policy will be to observe the first passage of the γ̂(t)i through a border. Upon

approval of any product or case, the values µi are fully revealed as well as the difference between the jump

process and the compensator–λiξt∗−
∑J∗t

k=1 Zk and “payoffs” are realized. Proposition 1 states the optimal

rule for stopping γ̂(t)i.

Proposition 1. The case is approved when and only when, and if and only if, γ̂(t)i passes for the first time

through the following barrier,

η∗(t) = δ(λξ −A) +
1

2σ2
V (t)Fµ̂,µ̂(γ̂(t)i, t)

+λi
∫
R+

[F (γ̂(t)i − Z, t)− F (γ̂(t)i, t)] dG(Z) (3.9)

where Fµ̂µ̂(γ̂(t)i, t) is the second partial derivative of the value function F with respect to the filtered state

variable µ̂, given a realization of µ̂ at time t.

This border represents the optimal tradeoff between delaying the approval of a case and approving in-

stantly. If the regulator delays the approval of a case, she receives more information, reducing the value of

V (t) and receives further compensation for the possible occurrence of adverse events δλξ. Approval pro-

vides the regulator with the payoff δA, while also allowing the regulator to avoid the risk of another adverse

event in the next instance, which is represented by the (negative) value λi
∫
R+

[F (γ̂(t)i − Z, t)− F (γ̂(t)i, t)] dG(Z).

Figure 1, below, visualizes the filtered evidence process and the optimal stopping barrier from Propo-

sition 1. The horizontal axis represents time, the vertical axis is the utility provided to the regulator, the

red-line is the filtered evidence process for one product review, and the purple line represents the optimal

stopping barrier. Adverse events appear as a discontinuous jumps downwards, reflecting the regulators’

aversion to approving cases when there is an indication that a drug may have an exceptionally poor safety

record for public use. The border slopes downward, as the value of more information decreases over the

course of the regulatory history. A case is approved only if its evidence crosses the boundary, which occurs

at the right-hand side of Figure 1.
8Carpenter (2004) provides intuition about the factors that determine this payoff.
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Figure 1 About Here.

4 Deadlines and Regulatory Behavior

Many government agencies, including regulatory bodies, face time constraints of different sorts, some im-

posed from without and some induced by the structural characteristics of their tasks. In particular, politicians

and courts concerned about limiting the delay associated with regulatory processes (whether governmental

or private) may impose deadlines for decision making upon the agency (Gersen and O’Connell, 2008). In

the case of pharmaceutical regulation in the United States, Congress has imposed “review-time goals” upon

the U.S. Food and Drug Administration’s Center for Drug Evaluation and Research (CDER), such that it

is now expected to act upon ninety percent of all “standard” new product applications within 10 months or

less (Carpenter, Zucker and Avorn, 2008). In other settings, deadlines are used to constrain the behavior

of licensing agencies, product review agencies outside of the United States, and other forms of decision for

regulatory agencies.

There are many possible rationales for deadlines, and all of them are exogenous to the model elaborated

here. One benefit of deadlines might be that the regulator values time – for example, discounts the future –

in a way markedly different from the way that citizens and their representatives do.

We now modify the formal model developed in Section 3 to generate predictions about the effects of

exogenously imposed institutions on regulatory behavior. The deadline is an “institution” in the sense that it

is an “if-then” rule: if the agent decades before the deadline, she receives the bonus, and forfeits the bonus

if she surpasses it. The model shows that providing regulators with a bonus for approving cases before a

deadline does result in more rapid approval. But, deadline bonuses can also make regulatory behavior less

predictable and the effect of altering the deadline bonus on regulatory behavior is highly non-linear.

5 Deadlines Reduce Time To Approval

We consider flexible deadlines in the form of a bonus payment if the case is approved by the deadline.

Imagine a deadline bonus D (D ∈ [0,∞)), which is awarded with certainty to the regulator if and only

if she approves the case by an exogenous deadline tD, s.t. 0 < tD < ∞. The finiteness of the deadline

bonus means that the agency could allow some cases to endure past the deadline, depending upon specific

values or evidence encountered in the case. Because the deadline bonus is imposed exogenously, it has a

straightforward effect on the regulator’s solution to the regulator’s optimal stopping problem. The barrier

specified in Equation 3.9 now takes one of two forms, depending on whether the deadline has elapsed.
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Before the deadline has been reached, the regulator’s adjusted stopping barrier is

η∗ =
1

2σ2
V (t)Fµ̂,µ̂ − δ(A+D − λiξ)

+λi
∫
R+

[F (γ̂(t)i − Z, t)− F (γ̂(t)i, t)] dG(Z). (5.1)

After the deadline has elapsed, the barrier resumes the form it takes in equation (3.9). At the instance

when the deadline elapses, the approval barrier makes a discontinuous jump upwards, which we depict

graphically in Figure 2. The deadline bonus results in a downward shift in the approval barrier, as the

regulator requires a lower burden of proof induced by the payoff of D. Similarly, the discontinuous jump

upward occurs as the regulator’s willingness to approve a case returns to trajectory it would have without a

deadline bonus.

Figure 2 About Here

Deadlines and deadline bonuses are usually imposed to decrease the time to approval in regulation. Our

first set of comparative statics demonstrate that this is predicted by our formal model.

Proposition 2 (Deadline Bonuses Decrease Time to Approval). For a set of cases N, i ∈ N i = 1, . . . , n,

fix a set of regulatory histories Hi(t). Suppose there are two deadline bonuses offered D,D
′
, 0 ≤ D′ < D,

and assume tD = tD
′
. Call the (possibly infinite) approval time for case i with bonusD, ti,Dapp . For all i ∈ N ,

ti,Dapp ≤ ti,D
′

app .

Proposition 2 shows that the imposition of a deadline bonus will reduce the time to approval for a set of

cases, and that larger deadline bonuses result in faster reviews, all things equal. The logic behind this result

is straightforward and generalizes Proposition 3 of Carpenter (2004): as the bonus increases, a case will be

approved earlier (if approved before the deadline) as the barrier shifts downward.

In addition to altering the size of the deadline bonus offered, politicians can modify the time at which

the deadline bonus elapses. The next proposition demonstrates that, as the amount of time a deadline bonus

is offered increases, the time to approval of cases is weakly decreasing.

Proposition 3 (Deadline Durations Decrease Time to Approval). For a set of casesN , i ∈ N i = (1, . . . , n),

fix a set of regulatory historiesHi(t). Suppose there are two potential times for deadlines to elapse tD > tD
′
,

and that the associated deadline bonuses are equal D = D
′
. For all i ∈ N , ti,Dapp ≤ ti,D

′

app
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Like Proposition 2 this result is straightforward. As the deadline is extended, the approval time of a case

that is approved before the deadline elapses remains unchanged. But, there are a set of regulatory histories

that result in new cases being approved before the deadline elapses, as the deadline is pushed back. These

cases will have a smaller approval time, proving the result.

Propositions 2 and 3 imply the following corollary, which shows that increasing the deadline bonus

or extending the date a deadline bonus expires decreases the expected approval time for cases that are

guaranteed to be approved.

Corollary 1. Consider a case i such that µi > δA. Then the expected time to approval for case i, E[ti,Dapp ] is

strictly decreasing in the deadline bonus and deadline time.

6 The Trouble with Deadlines as a Tool of Control

The results of the previous section demonstrate that imposing deadlines upon an agency will reduce the

expected time to approval for a case. This suggests that deadlines can be an effective tool of political control

of regulation. But imposing deadlines upon an agency is complicated and results in unintended “side-effects”

on the regulatory process. In this section we demonstrate that the relationship between the imposed deadline

regime and regulatory behavior is highly complicated, limiting the ability of elected officials to effectively

use deadlines to control agents. We demonstrate three specific results about deadlines: the expected approval

time is non-linear in the deadline bonus and time, deadlines can make regulatory behavior less predictable,

and deadlines increase the error rate of regulation. All three properties complicate deadlines as a tool of

control over agencies.

6.1 Non-Linear

We use simulation to demonstrate the non-linear relationship between deadline bonuses and the expected

time to approval. Figure 3 presents 100 simulations of a regulatory process and the corresponding time to

approval, varying the deadline and the size of the deadline bonus. The left-hand figure is a contour plot of

the expected time to approval. On the vertical axis the deadline bonus is varied and along the horizontal axis

the deadline is varied. The colors represent the expected time to approval, with purple colors representing

longer reviews of the drug and light-blue representing shorter reviews.

Figure 3 About Here
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The left-hand plot in Figure 3 demonstrates the complicated relationship between the deadline, the size

of the deadline bonus, and the expected time to approval. For example, if a deadline is offered for 26 units,

then the expected time to approval can vary from 75.8 units (with deadline bonus 0.5) to an expected review

time of 11.4 (with deadline bonus 10). Likewise, a deadline bonus of 6 can result in an expected review time

of 63.9 periods when the bonus is offered for 10 periods and 35.4 periods when the bonus is offered for 30

periods.

Figure 3 also shows that the relationship between these points is highly nonlinear. To formally demon-

strate this, we used the simulations from the left-hand plot to measure the curvature of the expected approval

time in the time of deadline (center-plot) and the size of the deadline bonus (right-hand plot). Curvature al-

lows for a formal measure of departures from linearity. For a twice-differentiable function f : X → Y , The

curvature of f at x ∈ X , c(x) is defined as (Shifrin, 2005),

c(x) =
|f ′′(x)|

(1 + f ′(x))3/2

If the function is linear at x, then c(x) = 0 (the second derivative of any linear function is 0 everywhere)

and as c(x) increases, the function is increasingly non-linear at x. Both the center- and left-hand plot shows

that the relationship between the expected approval time and the tools of control in a deadline are highly

non-linear. The center plot shows that the curvature is greater than zero for almost all deadline times includ-

ing in the simulation. Likewise, the curvature increases sharply as the size of the deadline bonuses increase.

The non-linear relationship between the expected approval time and the deadline bonus is problematic

for elected officials who are attempting to use deadlines to control the behavior of agencies. Elected officials

are unlikely to know exactly how a regulatory agency will respond to the imposition of a deadline bonus

and deadline time. As a result, elected officials will have to estimate the likely effect of the deadline bonus.

But officials will encounter substantial error if they attempt to linearly extrapolate from their information

about an agent’s reaction to the deadline bonus, lowering the effectiveness of deadline bonuses on con-

trolling agency behavior. Likewise, this non-linear relationship may lead elected officials to conclude that

deadlines are an ineffective tool of political control–when a small increase deadlines could allow a politician

to substantially decrease the expected approval time.
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6.2 Variance

Not only is it difficult for elected officials to assess the likely effect of a deadline bonus and deadline, under

a wide range of conditions, the approval time will become more unpredictable after the imposition of a

deadline. To demonstrate this result, we first prove Lemma 2 which will help us to characterize the approval

time distribution.

Lemma 2 (Multimodal Approval Distribution After Deadlines). Fix a deadline bonus D,D > 0 and a

deadline time tD. Call the approval time distribution for case i, p(tiapp). Then there is ϕ > 0 such that

p(t) = 0 for all t ∈ [tD, tD + ϕ]

Figure 4 About Here

Lemma 2 demonstrates that imposing deadlines upon a regulator ensures that no cases are approved

immediately after the deadline elapses, or that the approval distribution is (at least) bimodal. This suggests

that we can model the effect of deadlines on the approval time distribution using a mixture of two densities:

one distribution for the approval times of cases approved before the deadline and a second distribution for

cases approved after the deadline. Formally, suppose that the approval time tiapp for a case i is distributed

according to the density b(ti,D,t
D

app ) if approved before the deadline bonus, with mean t̄b
D,tD

and variance

σ2,b
D,tD

, where D denotes the dependence on the size of the deadline bonus D and tD the dependence on

the actual deadline. If the case is approved after the deadline, suppose that its approval time is distributed

a(ti,D,t
D

app ) with mean t̄a
D,tD

and variance σ2,a
D,tD

.9 Further, suppose that case i is approved before the deadline

with probability pi,D,t
D ∈ (0, 1). We can write the density of approval times p(ti,D,t

D

app ) as,

p(ti,D,t
D

app ) = pi,D,t
D
b(ti,D,t

D

app ) + (1− pi,D,tD)a(ti,D,t
D

app ). (6.1)

Equation 6.1 makes assessing the variance in the approval time distribution straightforward, using the law

of total variation. Proposition 4 formalizes the conditions where increases in deadline times and bonuses

will alter the variance in the approval distribution.

Proposition 4 (Deadlines Can Render Regulation Less Predictable). Fix two deadline bonuses D,D
′

and
deadlines tD, tD

′
. Without loss of generality assume D > D

′
and tD > tD

′
. Then the pair (D, tD) will

9Assume both densities have support on <+ and finite second moments.
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increase the variance in the approval time distribution of case i over (D
′
, tD

′
) if and only if

0 < pi,D,tD

σ2,b

D,tD − pi,D
′
,tD

′

σ2,b

D
′
,tD

′ +
(
pi,D,tD

− (pi,D,tD

)2
)

(t̄bD,tD )2 −
(
pi,D

′
,tD

′

− (pi,D
′
,tD

′

)2
)

(t̄b
D

′
,tD

′ )2

+
(

(1− pi,D,tD

)− (1− pi,D,tD

)2
)

(t̄aD,tD )2 −
(

(1− pi,D
′
,tD

′

)− (1− pi,D
′
,tD

′

)2
)

(t̄a
D

′
,tD

′ )2

+ (1− pi,D,tD

)σ2,a

D,tD − (1− pi,D
′
,tD

′

)σ2,a

D
′
,tD

′ − 2pi,D,tD

(1− pi,D,tD

)t̄bD,tD t̄
a
D,tD

+ 2pi,D
′
,tD

′

(1− pi,D
′
,tD

′

)t̄b
D

′
,tD

′ t̄a
D

′
,tD

′ (6.2)

Proposition 4 demonstrates that increasing the deadline bonus or extending a deadline can make ad-

ministrative decision making less predictable. The proposition also demonstrates that assessing whether

variance will increase after a change in the deadline bonus requires extensive knowledge about the regula-

tory process that an elected official is unlikely to possess while designing the deadline regime and would

be difficult to estimate after the deadline is imposed. In short, Proposition 4 demonstrates that politicians

are likely to have high uncertainty about whether a change in deadlines will make governmental decision

making less predictable.

To demonstrate the complicated relationship between the parameters of the review process and the

change in variance, Figure 6 evaluates Equation 6.2, applying different changes to the underlying mean,

while allowing for a low-variance case for the component distributions (left-hand plot) and a high-variance

case (right-hand plot). As the colors move from white to purple, the deadlines result in an increase in

variance–and blue areas indicate that the combination of changes in means of the component distributions

of the mixture decrease the variance in the approval distribution. Figure 6 shows that deadlines can increase

the variance in the approval distribution, depending exactly on how the deadline affects the regulatory be-

havior. Furthermore, this figure shows that the effect of deadlines on the variance in approval times is

complicated, making it unlikely elected officials would be able to intentionally alter the predictability of

drug reviews through the imposition of deadlines.

Figure 6 About Here.

6.3 Error Rates
6.3.1 Defining Regulatory Error

The types of errors made in an inferential setting such as this one depend on the reference point or “null

hypothesis” defined. If the null hypothesis is that the case should not be approved – that, for instance, the

case submitted to the FDA is not “efficacious” until proven so – then a Type I error is the rejection of the null
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by “approval” of the case when the proper decision should have been rejection or withholding of approval. A

Type II error would then correspond to acceptance of the null hypothesis when it should have been rejected,

that is, the rejection of, or failure to approve, a “good” case. If the null hypothesis is that the case should

be approved, then this typology is inverted, with a Type I error corresponding to faulty rejection and a Type

II error corresponding to faulty approval. In part due to convenience and consistency with earlier literature,

and in part because many if not most regulatory procedures that involve optimal stopping are characterized

by the first set-up – assume the case should not be approved until proven so, by some criteria – we adopt the

null hypothesis that the case should not be approved until an evidentiary basis has been satisfied, and define

Type I and Type II errors accordingly (see also Carpenter and Ting (2007), Bendor (1985), and Heimann

(1993)).

The event that the case should or should not have been approved can be clearly described in terms of

the model. The case should not be approved – according to the regulator’s own objectives and goals – if the

“true” value of the case lies below the value of rejection (or, equivalently, the value of infinite continuation).

In terms of the parameters and variables of the present model, this corresponds to the event that µi(t) < δA.

Accordingly, the case should be approved if µi(t) > δA. Note, that we do not consider the difference

between the compensated jump process in the definition of error, because this is an expectation zero process.

Any difference is due to randomness in the process and does not reflect fundamental characteristics of the

case. 10

Given the description of regulatory behavior that we have developed in the above model, we can then

state the probabilities of Type I and Type II error as follows. Let ΦI denote the probability of Type I error

given the null hypothesis that the case should not be approved until proven effective, valid or otherwise

“good.” Define ΦII as the corresponding probability of Type II error. Then

ΦI = Pr [∃ t ∈ [0,∞) s. t. γ̂(t)i ≥ η(t)|µi < δA] (6.3)

and

ΦII = Pr [@ t ∈ [0,∞) s. t. γ̂(t)i > η(t)|µi > δA] (6.4)

10We will not deal with the case of equality here, as it is a knife-edge occurrence that has measure zero. It
is sufficient to state a tie-breaking rule such that the case should be approved if µ(t)i = δA. As it turns out,
the case of equality is a non-trivially difficult one to analyze in terms of dynamic stochastic movements.
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It can be shown that the probability of Type I error is always non-zero in finite time, and given the current set-

up of the model, there is no way of avoiding Type I error if the regulator’s preferences and constraints allow

it any discretion whatsoever. Similarly, Type II error rates are possible, at least if regulation is restricted to

some finite, but large period of time, because the evidence process of a case may suffer a string of “unlucky”

events, dooming a case that should be approved to endless consideration.

6.3.2 Deadlines Increase the Error Rate

Using this definition of regulatory error, we demonstrate that the probability of Type I error is weakly

increasing in the deadline bonus.

Proposition 5 (Deadlines Increase Error Rate). For any case i such that µi < δA, the probability of a type

I error is weakly increasing in the deadline bonus D and the total time the deadline bonus is offered, tD.

Proposition 5 presents a fundamental tension inherent in the application of deadlines: the tradeoff be-

tween decreased time-to-approval and increased error rates. Lowering the approval barrier decreases the

time-to-approval for all drugs. However, lowering the approval barrier also results in more errors, because

the set of cases approved are weakly increasing in the size of the deadline bonus, and therefore the set of bad

cases that are approved is also weakly increasing in size as the deadline bonus increases.11 This problem

persists because elected officials lack the information to selectively apply deadline bonuses.

Given the tradeoff between decreased time-to-approval but increased error rates, politicians face a diffi-

cult institutional design problem: select the value of D that optimizes the elected official’s tradeoff between

errors and faster regulation. Solving this problem is rendered more complicated because the actual error rate

is highly non-linear in the size of the deadline bonus, and highly dependent upon the other parameters out-

lined in the model. The left-hand plot in Figure 5 presents simulations that demonstrate how the Type-I error

rate depends upon the size of the deadline-bonus (the horizontal axis) and the expected jump-size (vertical

axis), and the colors represent iso-probability curves for Type-I error. Notice, the curves are highly curved,

indicating that increases in Type I error is highly non-linear in both jump-size and deadline bonus. This

non-linearity in the deadline-bonus is also demonstrated in the right-hand plot in Figure 5, which shows the

error rate as a function of the deadline bonus, my marginalizing the jump-size. Notice, that for low and high
11Fix a regulatory history. Define the set of drugs approved with deadline bonus D, ND. Now, suppose

D
′
> D. Then each drug i ∈ ND must also be in i ∈ N ′D, otherwise we reach a contradiction that the

barrier under D is lower than D
′
.
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deadline bonuses, small increases in the deadline bonus result in essentially no increase in the type I error

rate. But as bonuses increase from 11-13, the type-I error rates are highly responsive. Therefore, even if the

politician could estimate the error rate after a deadline bonus, she might conclude that bonuses have little

affect on error rates (say if the bonus is shifted at low values) and therefore leave the bonus unchanged.

Figure 5 About Here

7 Variance of Approval Time at the FDA

Our formal model makes the counterintuitive prediction that imposing a deadline bonus can increase the

variance in approval times for government decision makers. To show that this is more than a theoretical

possibility, we analyze the variance in approval times for new molecular entities submitted to the FDA

and placed under priority review. The Prescription Drug User Fee Act (PDUFA) imposed deadlines on the

decision-time during FDA reviews (Carpenter, Zucker and Avorn, 2008) and drugs under priority review

had the most stringent deadlines. Therefore, approval times of priority drugs is a likely place to uncover the

counterintuitive effects of deadlines on regulatory behavior.

Directly assessing how deadline regimes affected drug reviews under PDUFA is nearly impossible, be-

cause the PDUFA deadlines are conflated with a massive increase in FDA staff. To demonstrate the increase

in staff size, the left-hand plot in Figure 7 shows that the FDA staff nearly doubled from 1988 to 2002.

The vertical axis represents the mean-staff size, the horizontal axis varies the year, and the red-line is a

non-parametric regression of the mean staff size on time. Clearly, each year the FDA increased the staff

allocated to drug review substantially, which is conflated with the imposition of the deadline. Therefore, we

look for suggestive evidence of deadlines’ influence on the variance in approval times by using year trends

in the variance of the approval time distribution.

Intuition and our theoretical analysis (Proposition 2 and Corollary 1), suggest an increase in staff size

and imposing deadlines should decrease the mean time-to approval. The center-plot shows this relationship:

the mean yearly approval time (vertical-axis) decreases substantially from 1988 to 2002. From 1988 to

2002, the mean approval time is lowered by over 5 months, a more than 25% reduction in mean approval

time.

Intuition also suggests that the increase in the staff at the FDA should manifest in regulation becom-

ing more predictable or a decrease in the variance of approval times. But, contrary to intuition and in line

with our theoretical results (Proposition 4), the increases in staff are associated with increased variance in
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approval times after the deadlines are imposed (right-hand plot). In this plot each point represents the vari-

ance in approval times for priority drugs submitted to the FDA in a given year, while the red-line represents

a nonparametric regression of variance on time. This regression shows that regulatory decisions are less

predictable after doubling staff for drug reviews and deadline reforms designed to better control regulatory

decisions. While a number of causes for this unchanged variance in approval times are possible, we suggest

that the most likely candidate are deadlines.

Figure 7 About Here

For evidence of deadline’s impact on the approval time distribution, Figure 8 shows the approval time

distribution for priority drugs, both before and after the imposition of the PDUFA deadlines. The left-hand

plot shows that the time to approval distribution before the deadlines was relatively smooth and unimodal.

By contrast the right-hand plot shows that deadlines create a bimodal distribution, which is predicted by

Lemma 2. The sharp spike occurs as the deadline for priority reviews elapses, at 6 months. As argued

above, this can induce an increase in the variance in the approval time distribution–which could negate the

effects of increased staff on the variance in FDA approval times.

Figure 8 About Here

8 Empirical Implications and Conclusions

Our analysis highlights the necessity of careful consideration of how institutions affect regulatory behavior.

Using a formal model of regulatory learning that is more general than has previously been considered, we

show how deadline bonuses alter the regulator’s behavior in the desired direction–decreasing the time to

approval for all cases under review. Yet, we demonstrate that deadlines are not a simple tool of political

control. First, the relationship between deadlines and the expected time to approval is highly non-linear,

making the politician’s decision about how to apply deadlines more complicated. Second, we show that

deadlines can increase the level of uncertainty in the regulatory process. Third, we show the application

of deadline bonuses to all cases under review induces increased error rates, as regulators are encouraged to

offer faster review on cases that should not be approved.

In spite of the complicated relationship between deadlines and regulatory behavior, we have not shown

that deadlines are net negative in terms of welfare, because the benefits from speeding up regulatory deci-

sions may outweigh the costs of added error. The benefit can be quantified by thinking of the set of cases that
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would eventually be approved (for which µi ≥ δA) but which are approved before the deadline and would

otherwise have been approved afterwards. When this value exceeds the value lost from higher Type I error,

then the deadline can be said to be welfare-improving within the constraints of the model. However, if there

are other costs to deadlines (in that the benefits of the case are perhaps dependent upon the amount of time

taken to learn about its parameters), or if there are other benefits to deadlines (in that the deadlines perhaps

induce grater efficiencies by the regulator that spill over to other activities), then the policy calculation of

the present model is inadequate and will fail to capture these benefits and costs.

8.1 Implications for Models and Tools of Political Control

Deadline institutions are commonly employed by politicians and courts as a way of constraining adminis-

trative and regulatory choice. Our model points to the effectiveness of these institutions, but also suggests

that the effects of deadlines can be quite complicated. First, Proposition 4 shows that the imposition of

a deadline upon an agency’s decision-making process can actually render the agency’s decision-making

less predictable (or more variable), even as it reduces decision time for many of the agency’s choices. In

other words, far from making political control easier, deadlines may complicate political control of agency

choice. Second, our analysis suggests that the imposition of new deadlines and deadline bonuses can gen-

erate greater administrative error. The relationship between agency payoffs (for meeting the deadline) and

error rates is, moreover, highly dependent upon many unobservable and unpredictable variables (see Figure

5). It is difficult to believe that deadlines are (or can be) optimized ex ante to account for all of these contin-

gencies.

We envision a productive research agenda at the intersection of deadline models and game-theoretic

models of administrative politics, including delegation. Under what conditions would a principal wish to

impose a deadline upon an agency decision-making process? How might an agency strategically react to the

deadline institution? These are fruitful questions for further modeling.

8.2 Empirical Work on Deadlines and Administrative Error Rates

Our model also predicts a relationship between deadline-induced decisions and error rates. Carpenter,

Zucker and Avorn (2008) examine deadlines imposed upon the FDA drug approval process and demon-

strate that new drugs approved just before the deadlines are three to five times more likely to encounter

measurable safety problems once on the market. Still, there is at present limited observational evidence

pointing to a relationship between deadlines and error, and examination of data in varied settings is neces-
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sary to more fully and accurately document this relationship. Moreover, Carpenter, Zucker and Avorn (2008)

do not measure the deadline bonus (or payoff) associated with the FDA’s having met a deadline. Nor do they

measure other concepts embedded in the present model that may vary across time and across decisions, such

as the population-level product danger (λi), the approval payoff (A) and the magnitude of the danger signals

(ξ). One possibility is a regression discontinuity approach that compares the error rates for cases approved

immediately before the deadline versus those that are approved immediately afterwards. If the difference

between “just before” and “just after” is plausibly random, then a more experimental approach to assessing

the relationship between deadlines and error is possible.

8.3 Empirical Implications for the Statistical Modeling of Bureaucratic Behavior

Our model also generates lessons concerning the empirical methods for studying the duration of adminis-

trative and regulatory decisions. Whereas learning processes characterized by continuous diffusions alone

induce parametric forms for the distributions governing regulatory decision time (e.g., the inverse Gaussian,

see Carpenter (2002, 2004)), our model predicts a hazard function which violates both standard parametric

assumptions for a hazard (e.g. exponential, gamma, inverse gaussian) and the proportional hazards assump-

tions often used in semi-parametric analysis of duration data (for example, the Cox model). To see why, we

first prove in Corollary 2 that deadlines cause a discontinuity in the hazard rate.

Corollary 2. For a case i, the hazard function hi(t) drops to zero immediately after the deadline elapses,

for all D > 0. Formally, limt↓tD hi(t|t > tD) = 0

The violation of the proportional hazards assumption occurs because the hazard rate drops to zero as the

deadline elapses, and therefore the coefficients on all covariates must drop to zero as well at this instance. We

conjecture that shifts in behavior after a deadline elapses may further exacerbate the violation of proportional

hazards. We leave analysis of a more appropriate estimator to another paper. For now, suffice it to say that

the introduction of greater realism into the evidence processes about which regulators learn yields much

greater complexity of behavior than is appreciated or embedded in standard statistical models.

8.4 Extensions and Future Work

Two limitations of this modeling framework strike us as ideal targets for thoughtful extension. First, a

primary determinant of time-to-decision in organizational settings is not simply the duration of “optimal

stopping,” but organizational features such as the queue of cases coming to the agency. These flows may
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depend upon strategic considerations (Carpenter and Ting, 2007), while in other cases factors such as orga-

nizational efficiency and the number of organizational units reviewing cases may also be influential (Bendor,

1985; Heimann, 1993; Ting, 2003). Such queueing processes have been well studied in stochastic analysis,

but to our awareness, models which embed both stopping behavior and queues have not been attempted.

Second, it is quite possible that much of administrative decision making amounts not simply to optimal

stopping but also to “optimal control,” in that the eventual quality or danger of the case may in fact depend

upon the amount of time that the regulator or risk analyst has spent learning about it. Whenever this is true,

the signal extraction metaphor governing our model leaves much to be desired. We suspect that introduc-

tion of queues and case-based optimization will yield rich theoretical progress, and until this happens, the

conclusions of the present analysis should be taken with circumspection.

A Appendix

The regulator observes the unfolding of evidence on a space Ω (with elements or experimental realizations

ω), which is structured by a set of σ-algebras =, and a probability measure P . In addition, = can be ordered

and expressed as a filtration (=t)0≤t≤∞, which is a family of σ-algebras that is increasing in its index, hence

=s ⊂ =t if s ≤ t. The filtration sequentially collects and orders all realizations ω = ωt on a time dimension

from 0 to t. The collection (Ω,=,=t, P ) constitutes a filtered probability space, on which we assume that a

set of “usual hypotheses” standard in the analysis of stochastic differential equations. These hypotheses and

a relatively clear explanation of their importance appear in Protter (2005: Chapter I, esp. pp. 34-36).

Using this more formal structure, we can make a more rigorous statement of Lemma 1.

Lemma 1 Let Ft = (=t) represent the filtration for the evidence process X(t) as given in Equation 3.3.

Without loss of generality, for any X(t)t≥0, any =t can be broken into three separable and independent

components: (1) the filtration of the continuous diffusion, FBt , (2)the filtration of the compensatory Fct ,

and (3) the filtration of the jumps FJt . Then a sufficient statistic for FBt is the dual (t,X(t)∗), where

X(t)∗ = X(t)− λξt+
∑J(t)

k=1 Zk, a sufficient statistic for FJt is (t,
Jt∑
k=1

Zk > 0) and a sufficient statistic for

Fc is (t, λi,jξ)

Proof of Lemma 1. Define ∆X(t) ≡ X(t)−X(t−) whereX(t−) ≡ lims→t,s≤tX(s) and let T denote the

set of stopping times. The agent knows the rate of compensation for the jump process, so we can “detrend”

the evidence process to obtain X∗(t) = X(t) − λξt and knowledge of the compensation rate is obviously
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sufficient to learn about Fc. During the continuous portion of the process ∆X∗(t) = 0 and during the

instant where a jump occurs |∆X∗(t)| > 0. Define ∆Xj,∗(t) ≡ {t ∈ T | |∆X∗(t)| > 0}- the set of jump

times-and define ∆XB,∗(t) ≡ {t ∈ T | ∆X∗(t) = 0}- the non-jump periods. These two sets are disjoint,

so that information about each component arrives at separate times. Now, take FBt ≡ {Fs|s ∈ ∆XB,∗(t)}

and FJt ≡ {Fs|s ∈ ∆XJ,∗(t)}. By assumption the jump process and the drift component is independent,

which implies that FB ⊥ FJ . Because the compensation rate is known to the agent, FB,FJ ⊥ Fc.

Note that FB and FJ contain all the relevant information about the evidence process at time t and because

all Levy-Processes are Markov chains this is all the information necessary to understand how the evidence

history predicts the future of the process. It follows directly that (t,X(t)) is a sufficient statistic for FB and

that (t,
∑Jt

k=1 Zk) is sufficient to summarize the information in FJt .

Proof of Proposition 1. The proof proceeds in three parts. First, we prove that the filtered evidence process

γ̂(t)i is a Levy process. Then, we rewrite the problem in order to remove the components of the expression

that will equal zero at the barrier. Finally, we utilize smooth pasting and value matching conditions to

determine the optimal stopping barrier.

We first show that the filtered evidence process γ̂(t)i is a Levy process.

Lemma 3. γ̂(t)i is a Levy Process.

Proof. As Miroschnichenko (1975) shows, µ̂(t)i is rescaled Brownian motion. Therefore, µ̂i(t) is itself a

Levy process (Protter, 2005; Applebaum, 2004). Now, as in Thm I. 37 in Protter (2005), we need only check

for stationary increments of our process, γ̂i(t). Expressing the difference,

γ̂(t)i − γ̂(s)i = µ̂(t)i −
Jt∑
k=0

Zk + λiξt− (µ̂(s)i −
Js∑
k=0

Zk + λiξs)

= µ̂(t)i − µ̂(s)i + λξ(t− s) +
∑
s<u≤t

∆γ̂(u)i. (A.1)

Equation (A.1) is σ{X(v)−X(u) : s ≤ u < v ≤ t}measurable, because all three components of Equation

(A.1) are derived directly from X(t). Therefore, X(t) has independent increments, it follows that γ̂(t)i has

independent increments and is therefore also a Levy process.12

12Some texts use the definition of a Levy process as the additive combination of a Brownian motion (with
drift) and a compensated Poisson process. In which case, the claim of Lemma 2 would follow by definition.
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Writing the expression for the derivative of F (γ̂(t)i, t),

δF (γ̂(t)i, t) = E[df ] = Eγ̂(t)i,t{F (γ̂(t)i, t+ dt)− F (γ̂(t)i, t)}+ o(dt) (A.2)

where o(dt) collects terms that vanish as dt goes to zero. We use a fundamental result from stochastic

calculus, the Meyer-Ito formula, an analog of Taylor-series expansion to rewrite Equation (A.2). Using this

result, we will be able to express Equation (A.2) in a form familiar to analysts, δF (γ̂(t)i, t) = Process +

Error.

To apply the Meyer-Ito Lemma, F (·, ·) must be twice continuously differentiable, which we have as-

sumed and γ̂(t)i must be a semimartingale, which follows from Lemma 2 and Thm II.9 and its corollary in

Protter 2005, 55-56.13 Rewriting Equation (A.2), we have,

F (γ̂(t)i)− F (γ̂(0)i) =
∫ t

0
F
′
(γ̂(s−)i)dγ̂(s)i +

1
2

∫ t

0
F
′′
(γ̂(s−)i)d 〈γ̂(s)i, γ̂(s)i〉cs

+
∑

0<s≤t
{F (γ̂(s)i)− F (γ̂(s−)i)− F

′
(γ̂(s−)i)∆γ̂(s)i}, (A.3)

where 〈·, ·〉cs of the continuous portion of the γ̂(s)i, which will be equal to the variance of µ̂i (Protter, 2005;

Applebaum, 2004).

The next step is to rewrite the first order terms of in equation (A.3) (Mordecki, 1999). To do so, we

first define two measures corresponding to the jumping process and its intensity. Define κ = κ(ω, dγ̂, ds)

as the jump measure for X(t) (a measure that describes the size of the jumps) and define ν = ν(dγ̂, s) =

λdsG(dγ̂) its compensator. Using these two measures, we are able to rewrite the the first order terms of

equation (A.3) as (Applebaum (2004) Thm 4.4.7, pg 226, Thm 4.4.10, pg 229),∫ t

0
F ′(γ̂(s−)i)dγ̂(s)i +

∑
0≤s≤t

(
F (γ̂(s)i)− F (γ̂(s−)i)− F ′(γ̂(s−)i)∆γ̂(s)i

)
=

∫ t

0
F ′(γ̂(s−)i)dγ̂(s)ci︸ ︷︷ ︸

Continuous Evidence

+
∫ t

0

∫
<
{F (γ̂(s−)i − x)− F (γ̂(s−)i)} × (κ(ω, dx× ds)− ν(dx× ds))︸ ︷︷ ︸

Jump Process (martingale)

+
∫ t

0

∫
<
{F (γ̂(s−)i − x)− F (γ̂(s−)i)} × ν(dx× ds))︸ ︷︷ ︸

Jump Process (systematic)

.

13For notational clarity, we suppress the dependence upon t in the following derivations.
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The first integral allows us to rewrite the first order continuous portion, while the two double-integrals

correspond to the jump portion of the process. We are now in a position to rewrite the difference of our

value function using the following three terms,

F (γ̂(t)i)− F (γ̂(0)i) =
∫ t

0
Lγ̂F (γ̂(s)i)ds+M(γ̂(t)i)t + o(dt) (A.4)

where Lγ̂F (γ̂(s)i) is the infinitesimal generator of γ̂(s)i (which is the continuous time analog of a Markov

transition matrix), M(s)t is a local martingale and o(dt) collects the terms that go to zero as dt→ 0. By the

above argument, we can express the M(s)t terms as,

M(γ̂(s)i)t =
∫ t

0
F ′(γ̂)dµ̂s +

∫ t

0

∫
<
F (γ̂s− − x)− F (γ̂s−)× (κ− ν)

where we have suppressed the inputs of κ and ν for clarity. Note, that the µ̂i(t) is a martingale because it
is a (rescaled) Brownian motion and

∫ t
0

∫
< F (γ̂s− − x) − F (γ̂s−) × (κ − ν) is a local martingale by the

Doob-Meyer Decomposition Theorem.
Once again, from the argument above we can express the functional form forLγ̂F (γ̂(t)i) as (Applebaum

(2004) pg 141, Kou and Wang (2003) pg 507),

Lγ̂t(F )(γ̂, t) = Fµ̂(γ̂(t)i, t) + Ft(γ̂(t)i, t) +
1
2
V (t)Fµ̂,µ̂(γ̂(t)i, t)

+λ
∫
<
F (γ̂(t)i − Z, t)− F (γ̂(t)i, t)dG(Z). (A.5)

Lemma 1 of Mordecki (1999) shows a localizing sequence can be defined showing that the M(γ̂(t∗)) = 0

at the optimal stopping time, t∗.14 Furthermore, as dt → 0, o(dt) vanishes. Therefore, we can now focus

our attention exclusively on the infinitesimal generator in equation (A.5).

Upon restricting our attention to the infinitesimal generator, we note that, as in Kyprianou and Suryi

(2005) and Novikov and Shiryaev (2004) that discrete jumps only occur downward and therefore cannot

cause the process to cross an optimal barrier.15 Therefore, a combination of value matching and smooth

pasting conditions will be sufficient to characterize the free boundary.

For the value matching condition we have,

δF (γ̂(t)i, t) = δA+ γ̂∗(t)i (A.6)
14A localizing sequence is a set of stopping times such that some property of a stochastic process holds.

This is analogous to the notion of locality in Real analysis where a process is restricted to some interval on
the real line.

15With a more general setting where jumps occur in both directions, we would need to focus on the
problem of “overshoot” or allowing an actor to account for the fact that the process may jump over a barrier
rather than reach the barrier by the continuous information from the drift and Brownian motion. See Kou
and Wang (2003) for a particularly clear discussion and analysis of overshoot.
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where γ∗(t)i denotes the values of the evidence process at the time of optimal stopping. For the smooth

pasting condition, we have (Dixit and Pindyck, 1994, 210)

Ft(γ̂(t)i, t) = δλξ (A.7)

Note, that because µ̂i(t) is a martingale, Fµ̂ will also be a mean zero martingale (Miroschnichenko,

1975; Carpenter, 2002, 2004). Remembering that the local martingale is at zero at the point of optimal

stopping, we rewrite Equation (A.2),

Fµ̂(γ̂(t)i, t) + Ft(γ̂(t)i, t) +
1

2σ2
V (t)2Fµ̂,µ̂ − δF (γ̂(t)i, t)

+λ
∫
<
F (γ̂(t)i − Z, t)− F (γ̂(t)i, t)dG(Z) = 0. (A.8)

Substituting Equations (A.6) and (A.7) into Equation (A.8), yields,

η∗ = δ(λξ −A) +
1

2σ2
V (t)2Fµ̂,µ̂(γ̂(t)i, t) + λ

∫
<+

[F (γ̂(t)i − Z, t)− F (γ̂(t)i, t)] dG(Z), (A.9)

and this is what was desired to be shown, therefore we have completed the proof.

Proof of Proposition 2. Fix D,D
′

such that 0 ≤ D
′
< D and a set of regulatory histories for all i ∈ N ,

=i,t. We proceed by contradiction. Suppose that there is some case i such that ti,Dapp > ti,D
′

app . This implies

that, at time ti,Dapp ,

η∗,D
′
≤ γ̂(ti,Dapp )i ≤ η∗,D

or that η∗,D
′
≤ η∗,D. Because we have fixed the regulatory histories this implies that δ(D

′−D) ≥ 0, which

contradicts our assumption that 0 ≤ D′ < D. We conclude that ti,Dapp ≥ ti,D
′

app .

Proof of Proposition 3. Fix tD, tD
′

such that 0 ≤ tD
′
< tD, assume D = D

′
and fix a set of regulatory

histories =i,t. Once again, we proceed by contradiction. Suppose there is i such that ti,Dapp > ti,D
′

app , which

implies that η∗,D
′

t ≤ γ̂(ti,Dapp )i < η∗,Dt . But this cannot be before tD
′
, because η∗,D

′

t = η∗,Dt for all t ∈

[0, tD
′
). And after tD

′
, η∗,Dt > η∗,D

′

t . Therefore, we have arrived at a contradiction and conclude that

ti,Dapp ≥ ti,D
′

app .

Proof of Corollary 1. Fix case i fix a set of regulatory histories and assume µi > δA. We prove the result

for the deadline bonuses, the deadline times follow analogously. Assume D > D
′

By iterated expectations,
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E[ti,Dapp ] = E[E[ti,Dapp |=]] and that E[ti,D
′

app ] = E[E[ti,D
′

app |=]]. From Proposition 2 we know that E[ti,Dapp |=] ≤

E[ti,D
′

app |=] with the inequality strict for some =. Therefore, E[E[ti,Dapp |=]] < E[E[ti,D
′

app |=]].

Proof of Lemma 2. Without loss of generality, consider an evidence process immediately before the deadline

elapses γ̂(tD−)i that is arbitrarily close to the stopping barrier γ̂(tD−)i + ζ = η(tD−), ζ > 0, that has yet

to be approved. After the deadline elapses the barrier makes a discontinuous jump upward of size δD.

Because the evidence process is continuous except for downward jumps, there exists ε, ϕ > 0 such that

|tD− − (tD− + ϕ)| < ε implies that Pr(|γ̂(tD−)− γ̂(tD− + ϕ)| < δD+ ζ) = 1 or that, with probability 1, the

evidence process will not cross the barrier for any t ∈ [tD− , tD− + ϕ].

Proof of Proposition 4. The proof proceeds by applying the law of total variability. We will denote whether

a case is approved before or after the deadline with the random variable Y . For deadline bonus D and

deadline tD the variability is,

var(ti,D,t
D

app ) = E
[
var(ti,D,t

D

app |Y )
]

+ var
[
E[ti,D,t

D

app |Y ]
]
. (A.10)

Carrying out the calculations for Equation A.10 shows that this is equal to

var(ti,D,t
D

app ) = pi,D,t
D

σ2,b
D,tD

+ (pi,D,t
D

− (pi,D,t
D

)2)(t̄bD,tD )2

+
(

(1− pi,D,t
D

)− (1− pi,D,t
D

)2
)

(t̄aD,tD )2 + (1− pi,D,t
D

)σ2,a
D,tD

− 2pi,D,t
D

(1− pi,D,t
D

)t̄bD,tD t̄
a
D,tD .

Consider deadline bonusD
′
and deadline tD. Then, the variance increases if var(ti,D,t

D

app )−var(ti,D
′
,tD
′

app ) >
0, which completes the proof.

Proof of Proposition 5. We prove the result for increasing deadline bonuses D. The same argument holds

for extensions of the deadline tD.

Consider a case i such that µi < δA and a review history =t. Consider two barriers η∗
D,tD

(t) and

η∗
D′ ,tD

′ (t), where the dependence on the deadline approval barrier is expressed in the subscript. Suppose,

without loss of generality, 0 ≤ D < D
′
. Then, this implies that η∗

D′
(t) < η∗D(t) for all t, as the barrier is

decreasing in the size of the deadline bonus and we have fixed the case and history across the borders. Now,

call the event of a type I error (the case approved) θD. E[θD
′
|=t] >E[θD|=t] for all =t, because the barriers

are decreasing in the size of D. Then, by iterated expectations,

ΦI
D′

= E[θD
′
] = E[E[θD

′
|=t]]

≥ E[E[θD|=t]] = ΦI
D
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or that the error rate is weakly increasing as the size of the deadline bonus increases.

Proof of Corollary 2. To prove Corollary 2, we first reexpress the approval problem as a counting process.

Then, relying upon the Doob-Meyer decomposition theorem makes the conclusions of the theorem imme-

diate.

Define N(t) as a counting process adapted to =t, with

N(t) =
{

1 if γ̂(t
′
)i ≥ η(t

′
) for some t

′
< t

0 if γ̂(t
′′
)i < η(t

′′
) for all t

′′
< t

. (A.11)

N(t) is a counting process because it starts at zero, jumps only once (and is therefore piecewise continu-

ous) and is adapted to a right-continuous filtration by use of the usual assumptions, which we have assumed

about X(t).

We can apply the Doob-Meyer theorem to decompose N(t) such that,

N(t) =
∫ t

0
h(t)dt+Mt (A.12)

where
∫ t
0 h(t)dt is the cumulative hazard rate and Mt is a martingale. We can now define the hazard rate for

case i as

E [dNi(t)|=t−] = ri(t)h(t)dt (A.13)

where ri(t) is a risk indicator which is equal to 1 if the case has not been approved and 0 otherwise. Because

Ni(t) is a counting process, dNi(t) is equal to either 0 or 1 and therefore we can restate the hazard rate as

h(t)dt = Pr(dNi,j(t) = 1|=t−) (Therneau and Grambsch, 2000). Therefore, we can prove Proposition 2 by

analyzing the probability that the case crosses the barrier at a given instance, given that it has not yet crossed

the barrier.

To complete the proof, without loss of generality, consider an evidence process immediately before the

deadline elapses γ̂(tD−)i that is arbitrarily close to the stopping barrier γ̂(tD−)i + ζ = η(tD−), ζ > 0, that

has yet to be approved. After the deadline elapses the barrier makes a discontinuous jump upward of size

δD. Because the evidence process is continuous except for downward jumps, there exists b, k > 0 such that

|tD− − (tD− + k)| < b implies that Pr(|γ̂(tD−)− γ̂(tD− + k)| < δD + ζ) = 1 or that, with probability 1, the

evidence process will not cross the barrier for any t ∈ [tD− , tD− + k] and therefore h(t)dt = 0.
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Figure 1: Visualizing The Optimal Stopping Problem
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This figure visualizes the filtered evidence process and the optimal stopping barrier from Proposition 1.
The horizontal axis represents time, the vertical axis is the utility provided to the regulator, the red-line is the
filtered evidence process for one product review, and the purple line represents the optimal stopping barrier.
Adverse events appear as a discontinuous jumps downwards, reflecting the regulators’ aversion to approving
cases when there is an indication that a drug may have an exceptionally poor safety record for public use.
The border slopes downward, as the value of more information decreases over the course of the regulatory
history. A case is approved only if its evidence crosses the boundary, which occurs at the right-hand side of
the figure.
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Figure 2: Deadlines Cause a Discontinuous Jump in the Approval Barrier

0 10 20 30 40 50

−
40

−
20

0
20

40

Time

E
vi

de
nc

e 
V

al
ue

First Passage
Time with Bonus

Border

Deadline

First Passage
Time without Bonus

This figure presents an evidence process and barrier with a deadline imposed upon the regulator. The
horizontal axis is time, the vertical axis the utility to the regulator for approval, the redline is the filtered
evidence process and the purple line represents the optimal stopping barrier. Notice the large, discontinuous
jump in this barrier after a deadline for case review elapses. This simple extension of the model causes a
drastic change in regulatory behavior, which we detail below.
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Figure 3: Extending the Deadline and Increasing the Deadline Bonus has a Non-Linear Effect on the Ex-
pected Approval Time
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This Figure demonstrates the non-linear relationship between deadline bonuses and approval times and
the expected approval time for a case under regulation. The left-hand plot shows how the expected approval
time varies in a non-linear fashion and is dependent upon both the timing and size of the deadline bonus. To
explicitly measure the non-linearity, the center- and right-hand plots measure the curvature of the expected
approval time in the time of the deadline (center plot) and the size of the bonus (right-hand plot). If there
is no curvature–or there were a linear relationship–then the curves in each figure would be at zero. But, we
see here that the lines are highly curved, indicating a highly non-linear relationship.
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Figure 4: Deadlines Cause Bimodal Distributions and Can Increase Variance
Approval Time Distribution
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This figure demonstrates the conclusions of Lemma 2 and Proposition 4 deadlines induce a bimodal
approval distribution and can increase the variance in the approval distribution. The left-hand plot shows
the approval time distribution for a drug and the right-hand plot shows the same distribution, but now with a
deadline imposed. Notice, that no drugs are approved immediately after the deadline inducing the bimodal
distributions. Further, because the deadline bonus shifts a large proportion of the density before the bonus,
we see that the variance actually increases due to the deadline bonus.
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Figure 5: The Error Induced by Deadline Bonuses is Qualitatively Similar to the Error induced by Optimistic
Priors on µi
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This figure presents the conclusions of Proposition 5. The left-hand figure shows that the probability
of a type-I error (plotted along the vertical axis) is increasing as the deadline bonus increases (horizontal
axis). The curve represents the type-I error rate over a set of simulations. The right-hand plot shows that the
effects of deadlines on type-I error rates are mediated by the jump-size, with larger jumps causing deadlines
to induce more error. This suggests that the optimal placement of a deadline is a highly non-linear problem
dependent upon all the parameters considered here.
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Figure 6: Deadlines Can Make Regulation Less Predictable
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High Variance Case

This figure evaluates Equation 6.2, applying different changes to the underlying mean and for a high- and
low-variance case. This figure shows that deadlines can increase the variance in the approval distribution,
depending exactly on how the deadline affects the regulatory behavior. Furthermore, this figure shows that
the effect of deadlines on the variance in approval times is complicated, making it unlikely elected officials
would be able to intentionally alter the predictability of drug reviews through the imposition of deadlines
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Figure 7: Increases in Staff Do Not Translate into Decreased Variance in FDA Approval Times
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This figure demonstrates that the imposition of deadlines may affect the variance in approval times. The
left-hand plot shows that during the 15 year period under consideration, the size of the staff for review
exploded. This, coupled with the PDUFA reforms, is associated with the mean time-to approval in each
year (vertical axis, center-plot) decreasing. But, contrary to intuition, the increases in staff do not affect
the variance in approval times (right-hand plot, vertical axis). Rather, the variance in approval times is
unchanged by the increases in staff. We suggest this could be attributed to deadlines.
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Figure 8: Deadlines Affect Approval Time Distribution
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This figure shows the pre- and post-deadline approval time distributions. The left-hand plots shows that
the approval time distribution before the implementation of PDUFA was unimodal and fairly smooth. By
contrast, the right-hand plot shows that the PDUFA deadlines caused approval times to become multimodal,
with approvals spiking immediately before the deadline elapsed. As argued above, this can cause variance
to increase, potentially diluting the effects of increase staff on FDA approval times.
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