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Abstract

We elaborate a theoretical model of regulatory learning in an environment where the regula-
tor must learn from evidence that unfolds both continuously and discretely, sometimes charac-
terized by rare but stark events. The combination of continuous with discrete data, we believe,
represents many of the learning problems with which regulators and risk and safety analysts
must engage. We show how the addition of a discrete component to a continuous stochastic
process can heighten the rate of error that a regulator might make. We also examine how ex-
ogenous deadlines might affect optimal stopping decisions of the sort undertaken by product
regulators. The model offers predictions both about the induced stopping behavior of the reg-
ulator and the distribution of error under different deadline institutions. We show how flexible
deadlines can both accelerate the decision making process and yet induce additional decision
error. Simulations illustrate the induced behavior and error predicted in the model.

Introduction

The policy tasks faced by government agencies and regulators often take the form of stopping
problems or dynamic optimization problems. The regulator is confronted with an application
of sorts - a grant application, a license application, a drug or medical device submitted for
approval - and features of its decision may be irreversible. The irreversibility may hold for
several reasons. A decision may be technologically reversible in that it induces a set of other
events (construction of a subdivision on a property abutting wetlands, removal of a dam, a large
capital investment) that are usefully modeled as irreversible. A decision also may be procedurally
irreversible because its announcement sets in motion other processes of regulation (rulemaking,
the involvement of other actors) or government (expected litigation, judicial review). Often for
regulators, decisions are irreversible from the standpoint of reputation. Having made a risky
decision, the regulator may not wish to revisit it (whether by reversal or even an investigation)
because revisitation will publicize a potentially severe error.*

*Department of Government, Faculty of Arts and Sciences, Harvard University. Corresponding author e-mail:
dcarpenter@gov.harvard.edu. Grimmer e-mail: jgrimmer@fas.harvard.edu. Carpenter acknowledges the National
Science Foundation (SES-0076452) and a Robert Wood Johnson Foundation Investigator Award in Health Policy
Research. Carpenter and Grimmer jointly thank Harvard University (the Center for American Political Studies, the
Institutional Development Initiative and Institute for Quantitative Social Science) for support. All arguments, errors
and omissions are our sole responsibility.

1The assumption of strict irreversibility can be relaxed by imposing revisitation costs or constraints upon a partially
reversible decision. We do not investigate any of these possibilities in the confines of this essay.



Despite decades of study in regulatory decision making, students of regulation and gov-
ernment organizations generally lack any sound theoretical guidance about these phenomena.?
First, and at the the most basic level, we lack models and theories that offer compelling por-
traits of what these decisions look like. What sort of probabilistic characterizations describe
well the stopping decisions of regulators and other government agencies? Second, we lack gen-
eral guidelines for describing how regulators learn both within and across cases. How would
regulators learn about the probable behavior of regulated firms and social organizations, using
the cases before them, each of which cases is subject to some uncertainty itself? Third, despite
years of research into bounded rationality in organizational and government settings (Padgett
1980, Bendor 1995), we lack insight as to how bounded rationality and other cognitive factors
shaping regulatory choice might influence stopping decisions undertaken by regulators. Fourth,
how might certain institutions — constraints and frames commonly employed by politicians and
other overseers of regulators — shape decision making? We focus on one such institution here,
namely the deadline, because it is a common feature of administrative processes and because
it is a particularly relevant constraint upon dynamic optimization. Because politicians or bu-
reaucratic superiors wish to limit regulatory delay, they often impose deadlines or one form or
another upon agencies. Deadlines may be more or less flexible.

In the context of these persistent questions, we offer a model of regulatory choice in which
an uncertain agent must learn and render an irreversible decision about a “case” (for example, a
product submitted for regulatory approval). The principal contribution of the model is to imag-
ine repeated regulation of an evidence process that is more general and hence more complicated
than is usually posited by analysts of political learning or dynamic stochastic optimization.?
Whereas the customary analysis of dynamic regulatory behavior proceeds by analyzing a dif-
fusion process (a Gaussian process, a Brownian motion, or a discrete-time random walk), the
evidence process about which the regulatory agent must learn in the present model is character-
ized by both continuous and discrete movements. The additive combination of these movements,
which we believe more accurately represents the sorts of evidence processes with which “real-
world” regulators must deal, renders the modeling problem harder, and it turns out that some
of the neater predictions of earlier models of dynamic regulatory behavior do not hold in a more
complicated but realistic setting.

1 Parameters and Structure of the Model: Reputa-
tion and Irreversibility

The conceptual structure underlying the statistical analysis rests on a model of product review
as a stochastic learning process characterized by uncertainty, boundedly rational foresight and
costly reversibility.* The model is quite generally conceived but as an illustrative (and running)
example, it may be applied to the approval regulation of pharmaceuticals. Let products (drugs)
be indexed by 4, market niches (diseases) by j, and review time by ¢, with t,p, denoting an
approval time and ts:0p denoting an optional stopping time or feasible stopping time. The
agency wishes to approve products such that their (therapeutic) value outweighs both (1) the
harms or risks of the product and (2) the value of waiting for more information.

2The empirical literature examining time-to-decision in regulation is small but growing. Analyses include Olson
(1997, 2000), Carpenter (2002), Ando (1999) and Kosnik (2005).

3The evidence process described here is, for instance, more general and complex than that analyzed by Carpenter
(2004), Carpenter and Ting (2005), Volden, Ting and Carpenter (2006).

4See Carpenter (2004) for an elaboration of a different model where a problem simpler than that here is repeated
and where the regulator keeps an eye on the “pipeline” of future therapies. We do not consider pipeline values in the
model here.



1.1 Stochastic Fundamentals and Bayes Equations

The regulator observes the unfolding of evidence on a space 2 (with elements or experimental
realizations w), which is structured by a set of o-algebras &, and a probability measure P.
In addition, & can be ordered and expressed as a filtration (S¢)o<t<oo, which is a family of o-
algebras that is increasing in its index, hence &y C 3 as long as s < t. The filtration sequentially
collects and orders all realizations w = w; on a time dimension from 0 to ¢. The collection
(92,3, S, P) constitutes a filtered probability space, on which we assume that a set of “usual
hypotheses” posited by theorists of stochastic differential equations holds. These hypotheses
and a relatively clear explanation of their importance appear in Protter (2005: Chapter I, esp.
pp. 34-36).

Products are characterized by two parameters - efficacy w;; and danger \;; - both of them
unknown to the regulator. Observed benefit in regulatory review evolves according to a com-
bined diffusion-jump process X (¢). For this (or any other) adapted stochastic process, let
Xi—(w) = lims—t,s<t Xs(w), and let AXy = Xy — X;— for any variable X. X(¢) is an ad-
ditively separable function of a Wiener process (a linear function of underlying efficacy (fi;)
plus a random component w(t)) and a negative jump process J(t) which imposes per-failure
costs according to a known distribution G(Zx|AJ; > 0). Formally, X (t) is a special case of a
Levy process — which we shall occasionally call the “Levy evidence process” — which obeys the
following law of motion:

Je(Nij)
X () = pit + ow(t) = Y Z (1)

where 0;; and p;; are constants and o;; > 0, w(t) is a standard normal variable with mean
zero and variance ¢, and \;; is the rate at which the product imposes costly losses (of size
Z). The regulator wishes to learn p;; and X;; but observes only X (t) and thus faces what
might be called a dual signal extraction problem: there are two parameters to learn about,
and information about one of the parameters does not, in and of itself, provide any insight
about the other. The problem is made somewhat easier by our assumption that the regulator
knows the distribution of “bad” events contingent upon their happening. This distribution is
G(z1) and it is assumed integrable such that the regulator can take expectations over it, with
E(Zy|AJy > 0) = IG(zx) with I denoting the relevant integral.

For each product considered, efficacy is given by a drawn from a normal prior distribution
wij ~ N (mj,s;), and danger is given by a draw from a gamma prior distribution, such that
f (i) = [0B)] o’ A°~1e=** | where I'() is the gamma function. The mean of the normal
distribution is m;, and the mean of the Gamma distribution is ozjﬂj_l = A;. The distributions

are assumed independent, such that cov (uij, Aij) = 0.

Without loss of generality, the regulator can restrict attention to several Bayes statistics that
are sufficient for optimal inference. These are

2
m;/s; +x/0ij

Diffusion Process Posterior Mean = Ey¢ (i) = flij¢ =
t(piz) = flije 1/Sj+t/0'i2]~

5This independence assumption is not as restrictive as it might seem. The idea is that if quality and danger
were correlated and that correlation were known, then the regulator could always use information from the revelation
of quality to reduce her uncertainty about danger, and vice versa. Without loss of generality we can restrict the
independence to a conditional form, such that once the regulator takes the prior of quality and danger into account,
“surprises” in quality are uncorrelated in expectation with “surprises” in danger.
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A crucial feature of this set-up is that the jumps take place on a set of collective (time)-
measure zero. This allows us to divide the stochastic history into continuous and discrete
parts. Let X be continuous part (the Brownian diffusion) and let X; be the discrete part
(the jumps).® For any optional stopping time, the agent can rearrange the stochastic history
into two separable elements: (1) the portion of the process composed by jump movements, and
(2) the portion of the process composed by diffusion movements. The idea is then that the
agent can apply (possibly different) Bayes equations to each of these elements separately. This
requires not only the independence of the processes, but also the assumption (implicit in the
Poisson process specification) that the jumps take place on a set of (time)-measure zero. For the
Bayes-Chernoff equation to apply to X, it is critical that scale-invariance be invoked. Yet while
the diffusion process has the scale-invariance property, the aggregate Levy process does not.
The measure exclusivity of the jump and diffusion components of the Levy process is sufficient
for these purposes, as between jumps the Levy process X (t) has scale-invariance and Gaussian
increments, whereas the jumps (which do not obey scale-invariance) have collective measure
zero. The rearrangement of the stochastic history is presented in Lemma 1.

Diffusion Process Posterior Variance = V (t)

Jump Process Posterior Mean =

Lemma 1: Bayesian Rearrangement and Sufficient Statistics for the Levy Ev-
idence Process X(t). Let Fy = (S¢) represent the filtration for the evidence process X (t)
as given in (1). Without loss of generality, for any X (t)i>0, any Fy can be broken into two
separable and independent components: (1) the stochastic history of the continuous diffusion,
FZ, and (2) the stochastic history of the jumps F/. Then a sufficient statistic for FZ is the
dual (t,X,P), where XP has full scale-invariance, and a sufficient statistic for ¥y is the dual

(t, f: 1(AZ), > 0)).

Proof: Proofs of all lemmata and propositions appear in the Appendix.

While a rather technical feature of the stochastic history, this rearrangement has the intuitive
property that the agent can at any time separate the continuous from the discrete movements
of the random process being observed, much as a physician could separate more continuous
outcome measures such as monthly pain or hypertension measurements from discrete events
such as a myocardial infarction or an event that flagged severe hepatotoxicity (Olson 1998;
Carpenter 2002). In the review of a dam licensing project by an agency like the Federal Energy
Regulatory Commission (FERC) in the United States (Kosnik 2006; Spence 1999), a regulator
might separate more continuous measures such as megawatt generation from more discrete
outcomes such as failures or environmental snafus and catastrophes. Alternatively, the review
of data from nuclear power plants, as part of an inspection or licensing operation, could include
more continuous measurements for energy generation and rarer, discrete measurements for safety
issues (Gordon and Hafer 2005).

6This follows Mordecki (1999). The model differs substantially from Mordecki’s in that our agent applies rules
of optimization directly to the Bayes-Chernoff filters of the state variables as defined by moments of their respective
posterior distributions. In Mordecki and other literature, the optimization programs are applied directly to the
untransformed state variables.



1.2 Value Functions and the Regulatory Objective

Let F (%) be a convex function mapping the Bayesian “filters” of the state variable X (¢) into
value experienced by the regulator. The problem facing the regulator can be described as the
optimal stopping of the filtered evidence process 4+ = fiz — At f ZG(zr)dz, with the following
objective (suppressing some subscripts):

sup Bype”*(t2r7) {Al + B s / e ™ {u*(s,w) - (s,w>/
t

R+

ZkG(zk)dz} dy}

— Ee0(tapp) {Al +6! (u* [tapp, w] — A (tapp,w)/ ZkG(zk)dz) } (2)
Rt

where ¢ is a discount factor, A is an approval payoff which is static, positive and known
with certainty throughout the review, PP is a given approval time, u* and \* are the agency’s
efficacy and danger estimates retrieved at the optimal stopping time, w denotes an elementary
event in the space €2, and y is a variable of integration. The regulator’s optimal policy is
to observe a first-passage time policy for the relevant state variables, where the threshold (or
boundary) combines dynamic optimality with recognition of the irreversibility of any approval
decision. Upon approval of any product or case, the values p;; and A;; are fully revealed, and
utilities (“payoffs”) are realized. Proposition 1 states the optimal rule.

Proposition 1: The product is approved when and only when, and if and only if, the
stochastic process 4 passes for the first time through the following barrier

0 (1) = SV ()7 Fag ()~ A / ZeG(2)dz + 647" 3)
R+

where Fy;, is the second partial derivative of the value function F with respect to the filtered
state variable [i, given a realization of fi at time t.

An important property of the regulator’s approval barrier is that second-order terms enter
only for the continuous component of the Levy process (that is, the Brownian diffusion). This
is a consequence of the theory of stochastic integration and local times of Levy processes, in
particular the Meyer-Ito Formula (Theorem 7.66 and Theorem 7.70, Corollary 1, of Protter
(2005)). The result is convenient for exposition of the present model, as expected effects of
different orders are rendered additively separable. As with other analyses of optimal stopping,
the second-order term %V (zf)2 Fun (@, t) may be interpreted as the marginal value, evaluated at
t, of waiting for more information on the continuous data before making an irreversible approval
decision (Carpenter 2004; see also Dixit and Pindyck 1994).

The intuition behind this result is that continuous stochastic processes (as represented here
by Brownian motion) generate continual data and have high variation within small time in-
tervals, whereas discrete stochastic processes generate signals only occasionally and have low
variation.” This conforms to the bifurcated data that regulators often face in their learning

"More technically, purely continuous semimartingales such as Brownian motion are examples of an “unbounded
variation” process whereas jump processes such as a Poisson process are “finite variation” processes. See Theorem
1.27 and 11.26 of Protter (2005).



problems, as revelations of “safety” and “danger” are often occasional, whereas revelations of
data on quality, price, efficacy and other dimensions of a product or project are often much
more continuous on both “space” (measurement) and time dimensions. The result encodes the
notion that learning about continuous processes occurs more quickly than learning about the
discrete ones.

2 Regulatory Approval Behavior and Deadlines
2.1 The Regulator’s Approval Behavior

The key to a stochastic description of the regulator’s approval behavior is the fact that discrete
events are always negatively valued and cannot induce approval.® Good news thus comes in-
crementally, whereas bad news can come both incrementally and “all at once.” Hence approval
decisions must always be conditioned on the event that no “bad news” has recently arrived.

For any set of state variables observed at t, let U*(¢) = Pr[tapp < ¢] be the probability of
case approval by time ¢, with ¢*(¢) its associated density. Then we can describe the “hazard”
function of the regulator’s approval policy as Ry ) = %
U*(t) is defective in the sense that lims—oo ¥* () < 1, unless (u—\) > A", Some products will
never be approved, and some regulatory cases will never terminate by means of final resolution.

It can be easily shown that

The first-passage distribution can be expressed as the joint probability that the diffusion
component passes through the barrier, given that a certain number of jumps have occurred, and
given that before none of these previous jumps was the barrier surpassed.

Lemma 2: The approval distribution obeys

() <Pr|fu>n(t)+ Y Zi sup  ji <nls)+ Y Zn (4)
% sE{O,tZk} %

The utility of Lemma 2 is that it allows an upper bound on the approval probability to
be expressed as the first (upward) passage probability of a continuous diffusion process, given
downward movement in the barrier via jumps. Hence the first-passage probability of the Levy
evidence process can be approximated by the first-passage probability of the diffusion, where
jumps shift the origin of the diffusion downward.

One relatively intuitive version of a joint event which generates case approval is the event
that (a) no jump has occurred by a stopping time tstop, and that at tstop, fir surpasses n(t) for
the first time. Here we can imagine the case where the regulator uses the occurrence of a single
event by time ¢t = ts10p as sufficient evidence that the case should not be approved by that time.
The probability that, by time tst0p, no jump has occurred for a Poisson process with intensity
A% is 1 — Pr [at least one event occurs byt] = e~ N tstop

8The first-passage time form of the regulator’s posited optimum behavior allows for a fuller description of the
limiting distribution of the regulator’s behavior. The complexity of the evidence process means that except in several
relevant and illuminating cases, this description does not allow for neat parametric forms. The reason is that the
occasional discrete jumps of the process introduce another form of randomness that must be conditioned upon. While
there are distributions describing the first-passage time of Brownian motion (Folks and Chhikkhara 1979), and while
the interarrival times of events in the Poisson process are exponentially distributed, the evidence process considered
here is a convex combination of a diffusion and jump process. We are aware of no closed form parametric distribution
that describes the first-passage time of a convex combination of such stochastic processes through a barrier (linear or
otherwise). Hence the elaboration here will rely on functional analysis.



2.2 Deadlines and Deadline-Induced Behavior

Many government agencies, including regulatory bodies, face time constraints of different sorts,
some imposed from without and some induced by the structural characteristics of their tasks. In
particular, politicians and courts concerned about limiting the delay associated with regulatory
processes (whether governmental or private) may impose deadlines for decision making upon the
agency. In the case of pharmaceutical regulation in the United States, Congress has imposed
“review-time goals” upon the U.S. Food and Drug Administration’s Center for Drug Evaluation
and Research (CDER), such that it is now expected to act upon ninety percent of all “standard”
new drug applications within 10 months or less. In other settings, deadlines are used to constrain
the behavior of licensing agencies, product review agencies outside of the United States, and
other forms of decision for regulatory agencies.

There are many possible rationales for deadlines, and all of them are exogenous to the
model elaborated here. One benefit of deadlines might be that the regulator values time — for
example, discounts the future — in a way markedly different from the way that citizens and their
representatives do.

We consider flexible deadlines in the form of a bonus payment if the product is approved by
the deadline. Imagine a deadline bonus D (0 < D < c0), which is awarded with certainty to the
regulator if and only if she approves the product by an exogenous deadline 7, s.t. 0 < tP < co.
The finiteness of the deadline bonus means that, in principle, the agency could allow some cases
to endure past the deadline, depending upon specific values or evidence encountered in the
case. The exogenous imposition of this deadline program transforms the regulator’s problem
in a rather simple manner. The barrier specified in 3 now takes one of two forms, depending
on whether the deadline has elapsed. Before the deadline has been reached, the regulator’s
adjusted dynamic value function is

Ve <120 (1) = 5V (0 Fan (. 1) — AL(G () + 5(A™" — D)

Whereas after the deadline has elapsed, the barrier resumes the form it takes in equation
(3). The regulator’s behavior around the deadline is described in Proposition 2.

Proposition 2: The hazard function RY (t) obeys the following two properties mear the
deadline

(a) lim, ;0 B (t[t > tP) = 0
(b) lim;y,p R (4]t < tP) = SUP, [0 1D ) R (s) for some c € R*.

The first statement in Proposition 2 suggests that, given a deadline bonus and a deadline,
the probability of case or product approval immediately after the deadline has elapsed is zero.
This does not imply that the deadline will always be met, but suggests only that, when the
deadline is not met, the disappearance of the deadline bonus will delay approval for some time
after the deadline has elapsed. The second statement in Proposition 2 suggests that, “right
before” the deadline elapses, the approval hazard will be at a local maximum. This Proposition
thus generates testable hypotheses if a deadline time — though not necessarily the deadline bonus
itself — can be observed.



3 Regulatory Error

The regulator can err for many reasons, and a full elaboration of the possible determinants of
error is purposefully excluded from this model.® Intuitively, the regulator might apply a biased
estimator, might discount the near-term and the long-term at (unreasonably) different rates,
might enter the problem with bad priors, might process information inefficiently, or might draw
upon its history poorly.

The types of errors made in an inferential setting such as this one depend on the reference
point or “null hypothesis” defined. If the null hypothesis is that the case should not be approved
— that, for instance, the drug submitted to the FDA is not “safe and efficacious” until proven
so — then a Type I error is the rejection of the null by “approval” of the case when the proper
decision should have been rejection or withholding of approval. A Type II error would then
correspond to acceptance of the null hypothesis when it should have been rejected, that is,
the rejection of, or failure to approve, a “good” case. If the null hypothesis is that the case
should be approved, then this typology is inverted, with a Type I error corresponding to faulty
rejection and a Type II error corresponding to faulty approval. In part due to convenience and
consistency with earlier literature, and in part because many if not most regulatory procedures
that involve optimal stopping are characterized by the first set-up — assume the case should not
be approved until proven so, by some criteria — I adopt the null hypothesis that the case should
not be approved until an evidentiary basis has been satisfied, and define Type I and Type II
errors accordingly (see also Carpenter and Ting 2005).

The event that the case should or should not have been approved admits of clear description
within the terms of the model. The case should not be approved — according to the regulator’s
own objectives and goals — if the “true” value of the case lies below the value of rejection (or,
equivalently, the value of infinite continuation). In terms of the parameters and variables of the
present model, this corresponds to the event that p — A (G(zx)) < §A™'. Accordingly, the case
should be approved if u — A (G(zx)) > §A~1.10

Given the probabilistic description of regulatory behavior that emerges from Proposition 1
and Proposition 2, we can then state the probabilities of Type I and Type II error as follows.
Let ®! denote the probability of Type I error given the null hypothesis that the case should not
be approved until proven effective, valid or otherwise “good.” Define ! as the corresponding
probability of Type II error. Then

o' = Pr { sup Y > n(t)|p — M (G(z)) < 5A1} (5)
t€[0,00)
and
o' = pr { sup A < n(t)|uw — M (G(zx)) > 5A‘1} (6)
t€[0,00)

It merits remark here that under this definition, either Type of error can, in principle, happen
randomly, that is, according to chance alone. In particular, it can be shown that the probability

9These different “causes” of error can be thought of as useful extensions to the model.

10We will not deal with the case of equality here, as it is a knife-edge occurrence that has measure zero. It is
sufficient to state a tie-breaking rule such that the drug should be approved if u — AI(G(21)) = §A~!. As it turns
out, the case of equality is a non-trivially difficult one to analyze in terms of dynamic stochastic movements.



of Type I error is always non-zero in finite time, and given the current set-up of the model,
there is no way of avoiding Type I error if the regulator’s preferences and constraints allow it
any discretion whatsoever.

Error from False ‘Initial Beliefs.” When regulators begin with overly optimistic or pes-
simistic beliefs about a case before them, then learning error can result because the regulator’s
initial beliefs (“priors”) inappropriately drop or hike the hurdle of evidence that must be sur-
passed in order for the case to receive approval. One benefit of the present model is that it
permits erroneous priors to be described in flexible and understandable terms. The regulator
may enter the problem with a pessimistic “first guess” as to the efficacy or quality of the case,
which we can describe with an inflated M, or the regulator may begin with an overly optimistic
sense of when discrete adverse events are likely to occur, which corresponds to a depressed A;.
At first glance, the error in initial quality (M) would seem to tradeoff equally with the errors
in initial danger (A). When A; is sufficiently large, this is an accurate understanding.

Yet A; describes an initially expected rate of events that are, by their assumed nature, rare.
(If they were not rare and discretely occurring then the utility of using a jump or Poisson process
to model would be in doubt.) To the extent that it encodes intuition, then, we should think of
A; as “small.” When this representation is considered, then there exists a real possibility that
the bias for M; (the prior of u;;), being linear and unbounded, may be of an order different
from that of the bias for A (the prior of A\;;). Recall that p;; is normally distributed (with
mean Mj), but that A;; is distributed as a Gamma variable. Both the Normal and the Gamma
distributions are two parameter distributions, but in the Normal case the expectation (or mean,
or first moment) of the distribution is a function of only one of these parameters. In part because
the Gamma often represents small, strictly positive quantities, its expectation is a function of
two parameters. Given a; > 0 and 3; > 0, the expectation of the Gamma distribution is g—j

A Bayesian regulator sets the origin point of the evidence process at the value of the prior
for the parameters being learned. Let the origin point of 4(= 4o) as I'. The regulator might
erroneously guess this prior by believing in a I'*** = I''"“¢ 4 ¢, If this is true, then the evidence
process will commence at too “low” or too “high” a level. When in particular the bias on I'®**
is positive (£ > 0), a “bad” product (for which v < §A™!) may be more likely approved because
the evidence process starts out ever closer to the barrier and can trip over it randomly with
higher probability. We can think of & > 0 as reflecting “optimism” about the case. In the
following discussion, we show that increasing regulatory optimism yields a high probability of
Type I errors.

The linkage between optimistic priors and the introduction of a jump process comes in the
fact that human agents often inflate or deflate the actual probability of ‘rare’ events (citation).
A family setting out to travel 400 miles to visit relatives might wish to drive because they believe
that the chance of a place crash is higher than it really is, while they might also believe that
the probability of a fatal automobile accident in the same interval is lower than it really is. The
Gamma-distributed prior for \; encodes these possibilities. Because E [A;] = g—j, first-order
movements in §; can induce higher-order movements in A;. Intuitively, this means that human
error in initial guesses about rare events is of greater magnitude than human error in initial
guesses about continuous events. Proposition 3 demonstrates three ways in which seeminly
innocuous movements in the prior can generate Type I error by inducing optimism.

Proposition 3: Let the set of comparison and counterfactual approvals have equivalent
histories (S4¢(X) is the same for all 7). Then the (a) For equivalent unidirectional paramet-
ric movements in mean parameters of quality (m;) and danger parameter (B;), ® is weakly
increasing in ;.



(b) For equivalent opposite-directional parametric movements in mean parameters of quality
(mj) and danger parameter (3;), ® is weakly increasing in 3; over a finite interval.

(¢) For equivalent unidirectional parametric movements in the secondary parameters of the
quality (s;) and danger parameter (3;), ®' is weakly decreasing in B; for “quick” approvals but
is weakly increasing in B; for “longer” approvals.

The intuition of Proposition 3 is that “movements” (equivalently, “errors”) in the initial case
parameters are of different orders. When both the quality and (inverse) danger are increased
by equal amounts, the error in danger is hiked more quickly than the error in quality, and
the origin point of the evidence process I'*** = 4;—¢ will increase disproportionately. Figure
Z4 demonstrates a sample relationship. In statement (b), the increases in (inverse) danger are
offset by reductions in the quality distribution prior, and this can dampen the overall origin
point of the evidence process, as illustrated in Figure Z5. Finally, statement (c) suggests that
when both the second parameters for both the normal distribution (quality) and the Gamma
distribution (danger) are increased, the probability of Type I error is reduced during early
review, but increases for longer reviews. This is a result of the Meyer-Ito Lemma and the
second-order valuation of continuous data. Early in the review (when approval is least likely
anyway), first-order increases in s; inflate 7(t) by second-order movements, but as the review
proceeds and approval becomes more likely, the reduction in squared posterior variance (V'(t)?)
dilutes this effect and the influence of a higher prior I'*** dominates.

4 Deadline-Induced Error

Deadlines may induce error because they stop the learning process and create a potentially
“artificial” bonus which reduces the barrier so that it is more easily reached. Without deadlines
and with “long continuation,” the evidence process would with certainty reach the true estimates
of pi; and A;;. However, the evidence process might probabilistically surpass the barrier in the
process, hence even under an ‘optimal’ procedure some amount of Type I error is to be expected.
The key is that deadlines may increase the probability of this error. With deadlines and the
deadline bonus D;, the approval barrier is more easily tripped even if v;; < AL

In considering institutions such as deadlines, it merits consideration that they may influence
both the ‘credit’ and the ‘debit’ side of the ledger. The ‘credit’ side of the ledger can be thought
of as the acceleration of an approval for a case or product that would eventually have been
approved anyway. One useful feature of the present model is that it permits a simple expression
of some of the “costs” and “benefits” of deadline institutions. The debit side of the ledger
comes from the Type I errors induced by the deadline bonus. In the following Proposition, we
demonstrate two features of the interaction between deadline and error.

Proposition 4: (a) For any set of cases with equivalent histories (i = S¢Vi, t), the
probability of Type I error ®, is weakly increasing in D.

(b) Given any D, and for any set of cases with equivalent histories, the introduction of jump
process to diffusion process generates more error. Monotonically, ®Y, is weakly increasing in

Proposition 4 allows us to parameterize the error probability by the expectation over the
jump distribution. At the simplest level, this permits a demonstration that the introduction of
a jump process into the information space creates more problems for deadlines. The “baseline”
case of Brownian motion alone is simply the case where F[Z;] = 0, and any jump process for
which E[Z;] > 0 introduces discreteness into the evidence process.

10



Just because error is induced does not mean that the deadlines are net negative in terms of
welfare, because the benefits from speeding up regulatory decisions may outweigh the costs of
added error. The benefit can be quantified by thinking of the set of cases that would eventually
be approved «;; > §A~* but which are approved before the deadline and would otherwise have
been approved afterwards. The value differential for this event is

Fdiff = exXp [—5 (t(?pp,i::l — taDpz?izg) |’Y > (SA_I, glt = %Qtvt]

When this exceeds the value lost from higher Type I error, then the deadline can be said to
be welfare improving within the constraints of the model. However, if there are other costs to
deadines (in that the benefits of the case are perhaps dependent upon the amount of time taken
to learn about its parameters), or if there are other benefits to deadlines (in that the deadlines
perhaps induce grater efficiencies by the regulator that spill over to other activities), then the
policy calculation of the present model is inadequate and will fail to capture these benefits and
costs.

5 Conclusion and Possible Empirical Applications

The combination of continuously unfolding evidence and discrete events is common in many
forms of regulation and risk analysis. We have shown that the introduction of a jump process
to a continuous evidence process makes two important differences for regulatory review: (1)
learning about diffusion is quicker (a result which is encoded in the Meyer-Ito lemma), but (2)
errors in initial guesses about jump process are more likely. The model thus encodes properties
of data, as well as intutions about the bounded rationality of human agrnts. These patterns can
interact — as in Proposition 3(c) — yielding even more counter-intuitive predictions.

The model has several empirical implications that deserve testing. The first of these, fol-
lowing from Proposition 2, is that deadlines of the sort discussed here should be observed to
introduce discontinuties into the hazard function of regulatory decisions. Second, following from
Proposition 3, observable error should be an increasing function of the discreteness of the data.
Rarer adverse events should be subject to greater regulatory error — both Type I and Type II —
because initial guesses about these processes are more easily erroneous. Finally, following from
Proposition 4, error rates should be conditioned upon deadline times and deadline bonuses.
Cases approved immediately before a deadline are more likely to experience Type I error than
cases approved after the deadline. The higher the deadline bonus, moreover, the higher the rate
of Type I error. This effect may be offset by the quicker review of cases that would have been
approved in any case.

Another set of implications concerns the methods for studying the duration of regulatory
decisions. Whereas learning processes characterized by continuous diffusions alone induce para-
metric forms for the distributions governing regulatory decision time (the inverse Gaussian,
Carpenter 2002, Carpenter 2004), our model predicts a hazard function which is both non-
parametric and violates the proportional hazards assumptions often used in semi-parametric
analysis of duration data (for example, the Cox model). We leave analysis of a more appro-
priate estimator to another paper. For now, suffice it to say that the introduction of greater
realism into the evidence processes about which regulators learn yields much greater complexity
of behavior than is appreciated or embedded in standard statistical models.

Two limitations of this modeling framework strike us as ideal targets for thoughtful extension.

First, a primary determinant of time-to-decision in organizational settings is not simply the
duration of “optimal stopping,” but organizational features such as the queue of cases coming
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to the agency. These flows may depend upon strategic considerations (Carpenter and Ting 2005),
while in other cases factors such as organizational efficiancy and the number of organizational
units reviewing cases may also be influential (Bendor 1985, Heimann 1993, Ting 2002). Such
queueing processes have been well studied in stochastic analysis, but to our awareness, models
which embed both stopping behavior and queues have not been attempted. Second, it is quite
possible that much of regulatory review amounts not simply to optimal stopping but also to
“optimal control,” in that the eventual quality or danger of the case may in fact depend upon
the amount of time that the regulator or risk analyst has spent learning about it. Whenever
this is true, the signal extraction metaphor governing our model leaves much to be desired.
We suspect that introduction of queues and case-based optimization will yield rich theoretical
progress, and until this happens, the conclusions of the present analysis should be taken with
circumspection.

APPENDIX

Proof of Lemma 1. First we define AX (t) = X (¢)—X (t—) where X (t—) = lim,_¢ s<¢ X ()
and let 7 denote the set of stopping times.'’ During the continuous portions of the process
AX(t) = 0, while during the instants of the jumps |AX(t)] > 0. Define AX7/(t) = {t €
T||AX(t)| > 0}, or the set of all times where a jump occurs. Similarly define, AXZ(t) =
{t € T|AX(t) = 0}, or the set of time where the process is continuous. Note, that these two
sets are disjoint,which implies that the information arrives at different times. Now, take the
\yt = {\sg|s € AXE(#)} and 37 = {Ss]s € AX7(t)}, and note that these two sets are disjoint
( ] = (). By assumption, the arrival of jumps are independent of the draws from the
Brownian motion, which implies that the o-algebras are also independent, therefore, IZ 1 7
(Billingsley 1980). Note that ¥ and 3 contain all the relevant information about Equation 1
at moment ¢t. Further, every Levy Process is a Markov process, therefore the only information
relevant to the future of the process is the current state of the process (Protter 2005, Theorem
I. 32, p 23); Applebaum 2004, pp. 71, 121). It follows directly that (¢, X(t)) is a sufficient
statistic to summarize 37 and that (¢, ZZ; Z),) is sufficient to summarize the information in
37 (Chernoff 1968).

Proof of Proposition 1 The regulator’s dynamic stochastic optimum is a time- and
moment-dependent function, derived from the following Bellman-Hamilton-Jacobi equation with
“omicron term” o representing terms of order less than t as dt — 0.

SF(3,t) = E[dF] = {E, 5 ,F(§(t + dt)) = F(3(t)) } + o(dt) (7)

To express the differential more concretely, we use the Meyer-Ito formula (Theorem 4.70 of

Protter 2005: 218-220), which holds for any convex f. The scale invariance of the diffusion

component, combined with the measure-exclusivity of the continuous and discrete components

of the Levy efficacy process, allows us to apply the Meyer-Ito formula not only to X (¢) (as in 1),

but directly to the transformed state variables expressed as posterior moments. This possibility
is stated formally in Lemma 1. Then

10160 = [ FGodty [ G0a68,+ 3 (160 - 16 - FGiad)

0<s<t
(8)

11 A stopping time in this instance is the set of all time, given that the o-algebra under consideration is the completed
natural o-algebra of the stochastic process.
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Define k = k(w, d¥, ds) as the jump measure for X (¢) (or X7(t)), and define v = v(d¥,ds) =
AdsF(d¥) as its compensator. Using the measure-exclusivity of the diffusion and the jump
process, we may express the first-order terms of the Meyer-Ito equation as

/ T P e+ D (FG) = F@s- — £/ (3s-)A%s)
0

0<s<t

= / (s ) dfis +/ /{f(%f +40) = f(§s-)} X (K(w, dy x ds) — v(df x ds))
0 0o J®
+/ /{f(%f +40) — f(3s—)} x v(d4 x ds))
0 JR

Define the infinitesimal generator of X; (equivalently, of 4:) by (L:’ f) (w, z). With these
results, we can express the differential of the Bellman-Hamilton-Jacobi equation as

B[dF] = / (L7 F) (o) (ds) + Q (w, 2), + o (dt)

where @ is a local martingale, defined as follows:

Q). = V(1) / £ Gom)diis + / / (F(o— +30) = F(3-)) x (5 — 1)
(0] 0 R

By an important supermartingale property, E [Q(f):] < 0, and by the value-matching con-
dition, the relation is one of equality (pure martingale status) at t;,,. Invoking the Ito-Meyer
Lemma, independence, and dividing through by the differential and taking limits as the differen-
tial vanishes yields a second-order stochastic differential equation for the infinitesimal generator
of Xy, (L&f) (w, 2):

(L:Yf> (w,2) = Fy (w,t) + Fi (w, z,t) + %V(t)2Fﬂﬂ(wvt) _5‘f0t (f(z+y) = f(x))dG (y)

As shown by Miroschnichenko (1975), the term F}; is a mean-zero martingale. To solve the
second-order stochastic differential equation, it is sufficient to note that any upward barrier is
passable only by continuous movements and not discrete ones (see also Alili and Kyprianou
2004; Kyprianou and Surya 2005). Hence a combination of smooth pasting and value matching
conditions will suffice to characterize the dynamic stochastic optimum (as in Carpenter 2004),
and using (2) for a characterization of F', yields

§luo™t =Tt — AT = %V(t)QFﬂﬂ (w,t) — AT

Proof of Lemma 2: The approval distribution may be expressed as the cumulative distri-
bution of a potentially infinite series of events in which the continuous component of the Levy
evidence process passes through a conditionally-adjusted non-linear barrier, as follows

Pr§e > 0" ()] = Pr [{ju > n(t) - AI(G(2))}&fno jumps in [0,1)}]
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+Pr | {f1e > n(t) — AI(G(2x))}&{1 jump in [0,¢)}]| G{S(}ltp }ﬂs <n(s) + Z1 — (14 s)AI(G(zx))

+Pr | (i > n(t) — A(G(21))}&e{2 jumps in 0,0} sup fis < n(s) + Z1 + Zo — (14 )AI(G (=)

s€{0,tz,}

+...

It is easily shown that the probability terms converge to zero as the number of jumps k gets
large. Given the independence of the jump process from the Brownian diffusion, the left hand
side of each probability term can be rewritten as Pr [,Ett >n(t)+ Y, Zr — (1+ t)AI(G(zk))],
and the first-passage probability can be reduced to

UH(t) = Pr i >n(t) + Y Zk = (1+ AL(G(z))] _up }ﬂs <n(s)+ > Zk = (1+ 8)AI(G(z))
' k ' (9)

Equation (4) of the Proposition is achieved by subtracting the compensator term from the
argument and the conditioning event.

Proof of Proposition 2: We begin with the proof of statement (a). Assume that as X
and 4, reach 7 = t” — s that the product has not yet been approved (supsefo,r) ¢ < n(t)). Then
for any 7 and X, and Z . Zkr, the probability of approval between 7 and the deadline tP can
be written as

UH(r,t?) =Pr | sup 4 > (n(t”) —n(1)4- —0] (10)
te[r,tD)
>Pr| sup i > ((t7) = n(r)la- =0, Y Zx=0 (11)
te[rtP) k,telr,tD)

The difference between the quantities in (10) and (11) is very small. As the difference between
7 and tP gets small, the relation approaches equality because the probability of more than one
jump in the interval approaches zero more rapidly than the interval itself does. Since statements
(a) and (b) of the Proposition invoke limits as ¢ tends to tP, we use (11) to characterize the
hazard rate h*. In this case, given no jump, the hazard of case approval is a function of the
first-passage time for the continuous component of the Levy process through the barrier. As
shown in Karatzas and Shreve (1991: 95-6, 196-7), this induces an inverse Gaussian form such
that, for any origin point X, and any barrier B > Xy > 0,

(B—Xo0) —(B-x0)?/2s
el dS
V2ms3

Now immediately after t has elapsed, the barrier 7(t) rises by the quantity D as the deadline
bonus disappears. Now imagine the event where the case’s evidence (9:) came “closest” to
approval (within e of reaching the barrier, where € is small (the epsilon of analysis), such that
SUPeo,0y it < (1(t)) but sup,¢(o,py fir +€ > (1(t)). Then for any small time-interval of size ¢,
equation (12) can be written as

Pr [tapp € ds} = (12)

14




Pr [tapp € dslt =t” + L] = &67(D+€)2/25d8 (13)

2ms3
Equation (13) is an expression of the approval density ¢* (t|t > t7), hence the hazard h*(t)
is strictly increasing in this quantity. By the structure of the inverse Gaussian form, at the
“beginning” of post-deadline review *(t|t = t” 4 €) = 0, hence h*(t|t = t© + ¢) = 0. But
because this is the closest case (e is small), and because of the monotonicity of (13), any case
that was not “as close” (with € larger) would take even longer (or have lower probability of

8w(n

immediate approval). Formally, ) > 0. Hence the result is proved.

For (b), note that ¥*(0) = 0, hence h*(0) = 0. So for ¢ = (0,t”), the result is trivially true,
which is sufficient to demonstrate that there exists a ¢ for which the statement is true, For a more
exact result, let 7 be the time of the last downward jump (7 = s, s.t.Zps > 0& Z;T Zys = 0).
For any jump of size Zj,, the approval density can be written as

ZkT
V2ms3

Fixing 7 and Zj, it is always possible to define ¢ so that Proposition 2(b) holds. QED.

Pr [t,wp € ds] = e %/ ds (14)

Proof of Proposition 3. We begin by showing that the probability of Type I error (&)
is increasing in the origin point I'. Let the error in I'*** be £ > 0. Let i = 1,2 be any two
products and without loss of generality let the prior for case 1 be erroneously optimistic such
that I“D’St 20 _¢ = FESt =0 (By transitivity the set of such products can be countably infinite. )
The assumptlon of Prop031t10n 3 is equivalent to the statement that the evidence process for 1
and 2 is identical, net of the error in priors, hence 75>0 =75 ]0 This means that

S (X1, () 155°) = S (Xa, (8) [155°) . vt

Although the products’ histories are identical their regulation is not, as

7S (X O 150 > A0 [S (X2 (1) 155°)] Wt < o0
By Lemma 1 and Lemma 2 we can separate the histories into continuous and discrete com-

ponents, such that the movements in the continuous components of the two evidence processes
are rendered comparable, as follows

A0S (XT3 @ 1ei5°) ) > =" [ (X35 (0 1557)] vt < oo

where X is the continuous (Brownlan motion) component of X. Begin with the case of
‘equality,” letting p;; = SA~!. Then by scale invariance, the distribution governing the first
passage of the process ji; through the barrier 7(t) is equivalent to the distribution governing
the first passage compensated process Y, = X{ — p;;t through the barrier 85 A~", where 6 > 0
is a scalar parameter reflecting the option value of the untransformed problem. This scenario
is that in which the case is “closest” to “bad” (ui; < 6A™'). Then by the reflection principle
(Karatzas and Shreve 1991, Proposition 2.8.1) the probability that, by any stopping time ¢stop,
the running maximum of Y;¢ has hit the absorbing barrier 647! is

P°| sup Y >00A" ] / e/ gs
0<5<tsiop V21 Jigsa-1-ve o)/ \/tston
This probability is increasing in the origin of the compensated diffusion V;2, = T'; —

Aj féR+ ZxG(2x)dz. For any “worse” case, the drift of X{ will be further downward (u:; < §A™Y),
but the approval probability will still be an increasing function of F;St. QED
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We can then restate each statement [(a)- (c)] of the Proposition as a claim about the origin

of the evidence process I';**. For statement (a), note that I'*** = m; + ‘;—; fw Z,G(zr)dz.
est est est —2a 21,G(21)dz

Whereas 628F2f and 8281;; do not exist, 821;21 = féﬁ* S Define mj, B; and p
such that we can represent unidirectional movements in the quality and safety parameters of

ost,pT aj ZG(zg)dz « Z,G(zp)dz
arest.e ) ’ i f%"’ k k _ R+ k f
Ias S—— = & [(m]- + p) ] 1+ B G L Hence for any m;

and (; there always exists a p > —@; such that I';(mj}, o, 5 + p) > T';(m}, o, 8;) + p. This is
demonstrated in Figure Z4.

For statement (b), the identical second derivative results hold, but now we seek values of
ay f%+ Z,G(zp)dz @ Rt ZG(zg)dz
Bi+p - (B5+p)?

—1is

est,p™
m;, Bj and p such that MT = a% [(m; —p) _

positive. This is true for any 8 < 4/« faﬁ ZyG(z)dz — p.

For statement (c), an increase in s; to s; + p, accompanied by an increase in 5} yields
an increase in the posterior variance to V(t) = = V() = s +p = 1n0) =

AT + Fan(s) + p)°.

- r
l/(slj+p)+t/o?j

Je(Xij)
Now for any counting process J(¢) and jump distance Y, Zx, the agent can by Lemma 1
k=1
separate the discrete movements in X from the regulatory history and compute the difference
in continuous histories as

A e (m+¢&)/s+ z1t o? m/s+ xat o? _
A [ = A0 (S = /7 _ /7 _ g (2 +st)”"
1/5+t/02 1/s+t/02

Then product 1 is approved with higher probability than product 2 whenever
[0AT" + Vi (tarop)®] = [AT! + Vo (tarop)?] < 0, 1 [S0) = i, » [S4]

Hence a sufficient condition for earlier approval for product 1 is

2
i + Ststo
§ 2 % I:‘/Q (tstop)2 - Vl (tstap)2]

i
The difference in posterior variances declines by a second-order factor as ts:op increases,
hence the condition fails “early” (¢stop smaller) and holds “late” (tstop larger).

Proof of Proposition 4: For statement (a), it is sufficient to restate the Gaussian form
for error probability used in the proof of Proposition 3. With the addition of a deadline bonus,
that probability is

P%| sup Y > [06(A— D)_l]] e /%ds

0<s<tstop

2 /°°
V27 Jos(a—D)-1)=Y 21/ tston

arest a |y ZrG(zr)dz . .
For (b), note that 55— = — %= . Where there is no jump process (E[Z;] = 0),
this derivative is zero and there is no error induces from inflated priors for I'. By inspection
the second-order error in priors from movements in (3; is increasing in fw_ ZyG(zr)dz, which

functions as a weight on A;.
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