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ABSTRACT: This paper elaborates two sets of statistical models for the analysis of 
regulatory review deadlines or “review time goals” and their influence upon regulatory 
decisions.  In the first set, dynamic duration models of time to decision are elaborated, with 
particular focus on semi-parametric methods from which the behavioral structure of a 
regulatory review can be induced or “backed out.”  In the second set, we consider different 
estimators for observational analysis of whether the deadlines in question influence the 
“quality” of the reviews or the likelihood of error.  In particular, we examine post-marketing 
regulatory events (PMREs) such as safety-based withdrawals and labeling changes, and we 
assess whether PMREs occur at a higher rate for drugs approved just before the deadline, 
compared to control sets of drugs approved at other times in the review cycle.  We apply 
these methods to the imposition of review-time goals by the Prescription Drug User-Fee Act 
(PDUFA) and its amended successors upon new drug review by the U.S. Food and Drug 
Administration (FDA).  Using the first set of methods, we find broad evidence that the 
deadlines have induced a piling of approvals right before the deadline elapses. Using the 
second set of methods, we find that these “pre-deadline” approvals are subject to 
substantially different post market experiences than drugs approved either after the deadlines 
or “very early” in the approval process.  
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The duration of choice remains a crucial dimension of government decision making.  Many 
agencies and regulators possess discretion and power not merely in their ultimate choices, 
but also in the question of when those choices are made.  While an emerging literature in 
institutional political science, economics and sociology has begun to tackle these questions 
(Spence 1999, Olson 1997, 2002; Ando, 1999; Carpenter 2002, Kosnik 2004, Whitford 
2006), there has been very little analysis of how political and administrative institutions may 
affect the timing and character of regulatory decisions.  To the extent that institutions have 
been represented at all in such research, they have entered statistical analyses as indicator or 
“dummy” variables, leaving too much unknown about the mechanics with which these 
institutions change regulatory behavior.  
 
In this paper we elaborate some statistical methods that permit analysts to examine the 
influence of deadlines upon regulatory decision making.  Deadline institutions impose a 
penalty (explicit or implicit) for the endurance of a decision process beyond a specified 
timepoint (the “deadline”).  Where the deadline is absolute, this penalty may be conceived as 
“infinite” or large enough to outweigh all other factors in the regulator’s decision. In other 
cases, the deadline penalty is smaller, such that the deadline becomes one of plural factors to 
influence the timing of regulatory behavior.  On these and other questions, the scholarly 
literature is all but silent.  We are unaware of any literature examining the influence of 
deadlines upon agency decision making, and very little on how deadlines influence 
organizational learning and delay more generally. 
 
The Timing Effect and the Quality Effect.  Deadlines can affect regulatory choice in at 
least two ways.  They can influence the duration of decisions by preventing regulatory 
processes from elapsing beyond a certain time (the “timing effect”), and they can influence 
the “quality” of those decisions.  Consider an example from the scholastic realm.  If for 
instance the dean of a university were to institute a new rule requiring professors to spend 
no more than 30 minutes with a term paper before grading it, then observers would be 
interested in at least two questions: (1) does the time limit on grading actually influence the 
distribution of professors’ work? and (2) does the time limit affect the grading patterns and 
other observable features of the grades?  If professors spent no more than 15 minutes 
grading papers before the half-hour limit was imposed, then the deadline would be expected 
to have little if any effect.  If on the other hand the usual professor was accustomed to 
spending one hour with each term paper before grading it, we would be interested in 
whether the new deadline really did shorten the grading time, and we would also be 
interested in questions such as whether students felt that they were shortchanged by the 
deadline.  We might ask, then, not only whether the timing of grading changed, but whether 
the distribution of grades was changed by the imposition of a deadline, and perhaps whether 
student grade challenges and protests were increased because of it. 
 
In this paper we develop statistical methods to address these two dimensions of regulatory 
choice.  We first elaborate a statistical model – the dynamic Cox model with time-varying 
covariates – that allows the researcher to “peer inside” the regulatory decision and to assess 
whether the deadline influenced its ultimate timing.  We then elaborate generalized linear 
models that examine, observationally and with statistical controls, whether the deadlines 
have influenced the results of the ultimate decision.  In both cases, we are not creating new 
statistical methods, but we are adapting relatively novel statistical methods for particular use 
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in institutional political science and the social scientific study of regulation and organizations 
more generally. 
 
We apply these methods to the review of new drug applications (NDAs) by the U.S. Food 
and Drug Administration (FDA), a subject of increasing interest in contemporary medicine 
and politics.  The enactment of the Prescription Drug User Fee Act (PDUFA) in 1992, and 
its revision in 1997 and 2002, imposed quite specific and somewhat flexible review time 
goals upon the FDA.  We assess whether these review time goals (“PDUFA clocks”) – 
which can be fruitfully viewed as deadlines with implicit penalties for their violation – have 
influenced the timing of FDA decision making.  We also ask whether drugs approved just 
before these PDUFA deadlines are subject to different post-market regulatory experiences 
than other drugs approved by the FDA.  While the application here is quite specific, the 
methods have broader application, including to other products and applications reviewed by 
the FDA (devices, vaccines, supplements), to other pharmaceutical regulators (the European 
Medicines Evaluation Agency of the E.U., or Health Canada), and to other regulatory 
situations where delay is an important feature of the administrative landscape (dam license 
renewal by the Federal Energy Regulatory Commission, for instance). 
 
A crucial feature of the present analysis is that the two statistical analyses are tied to one 
another in a flexible manner.  The dynamic Cox hazard estimation offers semi-parametric 
statistical evidence that the PDUFA clock deadlines induce changes in FDA decision 
making, and the results of these hazard analyses inform the statistical analysis of post-
marketing regulatory events. Using flexible statistical techniques to refine and yield the most 
comparable and controlled samples, we use this “before versus after” comparison to shed 
light upon the safety consequences of PDUFA deadlines. 
 
This paper serves as a technical companion to a shorter paper, Carpenter and Zucker (2006), 
in which statistical evidence is presented for highly abrupt changes in FDA drug approval 
probabilities in the months just before and just after statutory deadlines occur.  In addition 
to replicating and extending the results of that paper – showing that drugs approved just 
before the deadlines have substantially different post-marketing experiences than those 
approved just after – we also augment generalized linear models with other forms of 
observational analysis (including nearest-neighbor matching) to assess the robustness of 
causal inferences concerning deadline institutions and regulatory behavior. 
 
We begin empirically, by describing the user-fee law of 1992 and its amended versions 
passed in 1997 and 2002.  We then elaborate a dynamic Cox model for estimating the effect 
of deadlines upon regulatory review timing, and apply these methods to FDA review times 
for new molecular entities.  We then turn at least to generalized linear models for assessing 
the influence of the deadlines upon the quality of FDA choices, and examine the correlation 
of deadlines with post-marketing regulatory events such as drug withdrawals, relabeling, 
package and manufacturing revisions and other observable post-approval events. 
 
I. The User-Fee Program, and Review Clocks: A Description 
 
Drug review and marketing approval by the FDA is one of the most consequential (and 
controversial) regulatory policies of our time.  The FDA’s drug review practices have been 
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criticized from numerous perspectives.  The Administration has been lambasted repeatedly 
by those who fear that its attention to safety is too lax, and has been excoriated by those 
who feel that insufficient weight is placed upon patient access to new medicines and the 
benefits of market access for pharmaceutical companies.  We do not intrude into this debate 
except to note two things.  First, much (though not all) of the debate over has been a debate 
about the timing of FDA decision processes.  Second, this political and social debate is 
largely responsible for giving us the user-fee law that now governs the FDA and 
pharmaceutical sponsors.   
 
The first PDUFA legislation was passed in 1992 and new drugs were brought under its 
provisions starting September 1, 1992.  User-fee reauthorization came in an act that made 
other procedural changes to the FDA, in the Food and Drug Administration Modernization 
Act (FDAMA) of 1997.  New drugs were subsequently governed by that act if they were 
submitted on or after October 1, 1997. Most recently, the user-fee program was re-
authorized in 2002 as part of an omnibus package related to bioterrorism. Because its 
provisions expire every five years unless explicitly re-authorized, U.S. policymakers will be 
revisiting the user-fee program in 2007 at the latest.  The three user-fee laws have made 
many changes at the FDA, and among the most important of these is the provision of new 
staff resources to the Center for Drug Evaluation and Research, whose total employment 
has risen from 1,041 in 1981 to 2,395 in 2005.1 
 
The essence of the bargain struck under PDUFA is that the agency gets needed staff while 
the pharmaceutical industry and concerned disease advocates get quicker approvals.2  There 
were many ways to achieve the aim of quicker approvals, but the PDUFA legislation did so 
in a specific way: the introduction of a review clock.  From the date of first NDA 
submission, a drug’s “review clock” begins ticking.  The legislation then embedded goals 
such that a large percentage (usually 90% or more) of new molecular entities (NMEs) would 
be reviewed by a certain date.  The embedded incentive provision in PDUFA was that, if the 
FDA failed to meet the review time goals, the user-fee program would not be renewed [8].  
The clock differed according to whether the new drug application was designated “priority” 
or “standard,” as follows.3 
                                                 
1 Most recent data on CDER staffing totals are available at 
http://www.fda.gov/oc/oms/ofm/budget/2006/HTML/Summary/CDER.htm (accessed July 23, 2005).  
Data from earlier years (including 1981) are taken from the CDER historical database, FDA Project Archive, 
Department of Government, Harvard University.  See also P. B. Hutt and S. White, A Statistical History of the 
Food and Drug Administration (unpublished, FDA History Office, 1992). 
 
2 See testimony of Janet Woodcock, M.D., Acting Commissioner for Operations, FDA, Drug Safety and the Drug 
Approval Process, hearings before the Senate Committee on Health, Education, Labor and Pensions, March 3, 
2005; http://www.hhs.gov/asl/testify/t050303b.html (accessed October 16, 2005). “Under the PDUFA 
approach, industry provides additional funding in return for FDA's efforts to meet drug-review performance 
goals that emphasize timeliness but do not alter or compromise our commitment to ensuring that drugs are 
safe and effective before they are approved for marketing.” 
 
3 C. Lewis, “FDA Begins Product Approval Initiative,” FDA Consumer, May-June 2003. For review time goals 
to be reached by FY 2002, see U.S. FDA, Office of the Commissioner, Office of Policy and Planning, “Report 
on PDUFA Goals: Original New Product Applications,” http://www.fda.gov/oc/pdufa/report2002/2002-
onpa.html (accessed October 16, 2005).  For FY 99 goals and a summary of earlier deadlines and goals, see U.S. 
FDA, Office of the Commissioner, “Performance on FY 99 FDAMA Goals,” 
http://www.fda.gov/oc/fdama/fdamaplnresponse/rptgoalsFY99.html (accessed October 16, 2005). 
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PDUFA, 1992 (began 9/1/1992): by 1997, review and act upon 90% of standard 
NDAs in 12 months, 90% of priority NMEs in 6 months. 
 
FDAMA, 1997 (began 10/1/1997): by FY 1999, 30% of standard NDAs in 10 
months, by FY 2002 90% of standard NDAs in 10 months; same as PDUFA for 
priority NMEs.4 
 
“PDUFA III,” 2002 (began 10/1/2002): For standard and priority NDAs, same 
deadline months as in FDAMA. 
 

Among the many notable features of the user-fee program is the absolute nature of the 
“PDUFA clock” deadline.  If the deadline is 12 months, then once the 12th month has 
elapsed, CDER has far less incentive to hurry the drug, as it is simply impossible that the 
drug can count as one meeting the annual review time goals.  Because the review time goals 
were structured upon deadlines, an absolute priority is given to the deadline as opposed to 
an “average” or “median” review time.  Put differently, the user-fee laws of 1992, 1997 and 
2002 accelerated the FDA in specific ways. The user-fee law did not ask for 2- and 3-month 
reviews, and it did not ask that the occasional two-year review disappear entirely.  Instead, 
the provision that eventually nine of ten drugs must be reviewed by the deadlines means that 
the PDUFA clock uniformly governs most all of FDA’s review behavior. 
 
Statistical Implications of Deadlines: Hypotheses.  We hypothesize that the PDUFA 
clock deadlines introduce a temporal discontinuity into drug review.  Consider the 12-month 
review clock for standard drugs, and suppose we focus attention on the incentives of the 
agency to approve a drug in the next two months, however long the review has lasted to 
date.  When the eleventh month of the review cycle has been reached, then the incentives 
for completing NDA review in the next two months are quite high, because near-term 
completion will mean that the agency has met the review clock for this drug.  However, if 
the agency fails to meet the review time goals, and the thirteenth month of the review clock 
has been reached, then there should be much less incentive for the agency to approve the 
drug in the next two months. Hence we should observe a high proportion of approvals 
concentrated or “piled up” in the months and weeks just before the deadline, and relatively 
few concentrated just after the deadline.  The same logic should obtain for a six month 
review.  When the fifth month of review has been reached, incentives to approve in the next 
month or two are quite high.  When the seventh month of the review has been reached, 
however, there is much less incentive to approve in the next two months. 
 
 

                                                                                                                                                 
 
4 Indeed FDA officials trumpeted the fact that the agency was ahead of congressional statute in meeting these 
deadline goals.  For instance, by June 2000, “51 percent were within the time period for review,” whereas the 
statutory goal was 30%, meaning that over half of NDAs were meeting the 10-month deadline goal.  FDA 
Commissioner’s Office, “Performance on FY 99 FDAMA Goals,” 
http://www.fda.gov/oc/fdama/fdamaplnresponse/rptgoalsFY99.html (accessed October 16, 2005). 
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II. Statistical Decomposition of the FDA Review Cycle, before and after 
PDUFA. 
 
In order to test our hypotheses, we must retrieve statistical estimates of the conditional 
probability of approval at each point of the FDA review cycle.  In other words, we seek to 
address the question: at each month of the review cycle, what is the relative hazard rate of 
approval in this month, given that the drug has not yet been approved?  We conduct 
likelihood-based hazard analyses of FDA review times and retrieve month-specific hazard 
estimates that allow us to construct a statistical portrait of the FDA review cycle.  To 
minimize dependence upon parametric statistical assumptions we employ Cox proportional 
hazard models.5   
 
Fundamental Terms and Indexation.  We begin formal elaboration of our statistical 
models by defining terms and indices that will be used throughout the following analysis.  
For any new drug application submitted to the FDA, identification by at least four indices is 
possible.  All of the drugs in a selected sample can be individually indexed i – the assignment 
of unique NDA numbers to drug applications is one example – which can serve as an 
encompassing index.  We use Greek letters to denote the other three indices (sponsor, 
primary indication and time submitted). The drug will be submitted by a sponsor κ  in year 
ζ  for primary indicationψ .  Only the index i is alone sufficient to identify all drugs, as 
knowing the sponsor (κ ), the primary indication (ψ ) and the year submitted (ζ ) may often 
leave more than one drug in a category.   We further create two sets of indicator variables for 
the sponsor and primary indication of a drug.  We will denote the indicator variable for a 
particular sponsor as Sκ , equal to one if sponsor κ  has submitted drug i for FDA review 
(and 0 otherwise), and we will denote the indicator variable for a primary indication as Dψ , 
equal to one if the drug i is intended to treat disease ψ , 0 otherwise.    
 
We now turn to estimation of the approval hazard function.  Intuitively, relative to a baseline 
month (this is set as the first month of the review cycle in all of our analyses), we seek to 
retrieve the ratio of (a) the hazard rate in the month under consideration to (b) the hazard 
rate for the baseline month, controlling for all relevant and feasible covariates.  Setting the 
baseline month as the first month of review (the denominator hazard rate), estimates of the 
hazard for all subsequent months can be used to construct an “approval hazard ratio” 
(AHR) or the ratio of the hazard (h) in month τ  = t to the hazard in month one (τ = 1), 
holding all other variables (X) and parameters (β ) constant.   
 

 ( )
( )1

AHR  = t
t

h X
h X
τ

τ
τ

β
β

=
=

=

′
′

 (1) 

 
Once approval hazard ratios for each month are calculated, they can be compared to 
determine whether some months present a higher or lower probability of approval than 
others.  Using data from before and the different institutional changes, we can also examine 
                                                 
5 We have employed other models that embed parametric assumptions, with results that are substantively 
identical to those that we display here.  Estimates are available from authors upon request. 
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whether the review cycle has changed after the introduction of these changes, and whether 
approvals are concentrated in certain months of the review cycle after the reform.  Let 
REFORM be a binary variable measuring whether the drug was submitted before (0) or after 
(1) a certain institutional reform.  Holding all other observed variables constant, we can 
compare the approval hazard ratio for any month t (say the tenth month of the review cycle) 
before and after the user-fee act, as follows: 
 

( )
( )

1

0AHR  =
t

REFORM
t

t REFORM

h X
h X
τ

τ
τ

β
β

=

=
=

= =

′
′

 

 
We can then test whether discontinuities exist by comparing approval hazard ratios within 
regime, as follows 
 

 
( )
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1

1 1
1

, 1 1 0 0
ˆ

t t

REFORM REFORM
t t

t t t t REFORM REFORM

h X h X
AHR AHR

h X h X
τ τ

τ τβ β
ξ

β β
= + =

= =
= + =

+ + = =

′ ′
= − = −

′ ′
 (2) 

 
The statistical significance of , 1t̂ tξ + must be determined not from a t-test or z-score (where 
the null hypothesis posits a single and known value), but from a restricted test (such as a 
Wald test or score test W) that compares the values of two or more stochastic coefficients.   
 
We begin by retrieving a portrait of the behavioral review cycle of CDER by estimating 
several forms (parametric and semi-parametric) of dynamic (time-varying covariate) duration 
models.  We begin with the semi-parametric version, which is a form of the Cox model.  We 
begin with representation of the review process in counting process notation.  For any drug 
i, let 
 

 
1 if drug i is under review at time  

( )
0 otherwise                                    i

t
R t

=
 

 
We then seek estimates of a k-element parameter vectorβ , where β  contributes to the 
partial likelihood function 
 

 ( )
( ) ( )

( ) ( )

( )

1 0 0

i
im

j
i

dN s
X stn

i
X s

i t s jj

R s e
PL

R s e

β

ββ
= ≥ =

    =      
∏∏∏ ∑

 (3) 

 
Here s is a variable of integration that varies within spells of total length ti [the review time 
for drug i] and m (“month”) is an arbitrary index for s which can, without loss of generality, 
be represented as a discrete, connected and dense partition of ti into increments tm such that 

m i
m

t t=∑ .  The sample size is n and N is a counting process (which can always be modeled 

as locally Poisson (Therneau and Grambsch 2000: 11)) that offers a generalized 
characterization of the number of events in [0,tm). 
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The log-partial likelihood is then  
 

 ( ) ( )

01 1
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which can be differentiated to generate a k by 1 score vector, as follows 
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Where ( ),x sβ  is a weighted mean of X over those drugs still under review at time s.  To 
represent this quantity, let yi be the approval score for the ith drug, that is 

( ) [ ], exp ( )i iy t X tβ β=  , and let Y(s) be the aggregate number of drugs still under review (or 
at “risk” of getting approved) at time s.  Then 
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Notice that the scored observations Ri(s)yi(s) function as weights for the independent 
variables.  The negative second derivative can be formed from the k-by-k information 
matrix 
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For various reasons of information and computational feasibility, the inverse of the observed 
information matrix ( )1I β− is used in lieu of the inverse of the expected information matrix 

( ){ } 1
ntE I β

−
, even though the latter is analytically kosher (Therneau and Grambsch 2000: 

40-41).  The maximum partial likelihood estimator is obtained by solving the partial 
likelihood equation ( )ˆ 0U β = .  This is done via a Newton-Raphson algorithm, which 

iteratively computes ( ) ( ) ( )( ) ( )( )1 1ˆ ˆ ˆ ˆn n n nUIβ β β β+ −= + until convergence is reached.  With 

dynamic Cox estimation, order months in X such that the τ th month is the τ th element 
ofβ . With the first month estimated as a baseline, the AHR estimate for month 

τ is ˆˆ e τβ
τη = . Because the month-specific estimates are embedded in the coefficient vector 

of the dynamic Cox model, tests of differences between any two months in the review cycle 
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can be executed by means of a score test statistic, which can be computed using the first 
iteration of the Newton-Raphson algorithm.  This is 
 

 ( )( ) ( )( ) ( )( )10 0 0U UIβ β β
−

′   

 
Let υ  and ω be any two months in the review cycle, such that 0, 0,υ ω υ ω> > ≠ .  Then 

we can represent restrictions by ( )ˆq gβ =  such that ˆ ˆ
τ ω τ υβ β= == , and the following test 

score statistic (which is distributed 2χ ) will represent an appropriate test of the identity of 
the approval hazard across the two cycle months in question. 
 

( ) ( ) ( )
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τ ω τ υ τ ω τ υ τ ω τ υβ β β β β β
β β β β β β

= = = = = =

−
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       ′  = − − −           
  (4) 

 
 
In Appendix A we display sample estimates from Cox estimation using S-Plus output.  The 
code is repeated as are the estimates. 
 
An Application to FDA Review Times under Deadlines. 
 
In Figure 1 we plot monthly approval hazard ratios and their standard errors retrieved from 
dynamic Cox estimation for the first 24 months of the review cycle where these can be 
estimated. Figure 1 shows that for drugs submitted before 1993, no discontinuity was in 
evidence at the tenth or twelfth months of review.  Indeed, for molecules submitted before 
the user-fee act governed them, the approval hazard ratio for drugs in the eleventh and 
twelfth months was not statistically differentiable from that in the third month ( 2χ = 0.46; p 
= 0.4987), the sixth month ( 2χ = 0.08; p = 0.7733), the tenth month ( 2χ = 0.15; p = 0.6957), 
or the eighteenth month ( 2χ = 0.05; p = 0.8154). Moreover, there was no statistically 
detectable difference between the approval hazard of the 11th and 12th months of review, and 
the approval hazard in the 13th and 14th months of review ( 2χ = 0.00; p = 0.9962). 
 
Our analyses suggest that the PDUFA clocks have dramatically changed the behavioral 
structure of the FDA review cycle.  For standard drugs submitted from 1993 to 1997 and 
falling under the provisions of the first user-fee law, we observe a sizable increase in 
approval hazards for the eleventh and twelfth month of review compared to the same 
months before PDUFA ( 2χ = 6.91; p = 0.006).  Moreover, as hypothesized, approval 
hazards fall off appreciably for the two months after the review clock deadline ( 2χ = 6.93; p 
= 0.0085).  For the period since 1997, when the relevant deadline for non-priority NDAs 
was ten months, we observe a large increase in approval hazards in the ninth and tenth 
month of the review cycle, and again a corresponding decline in the eleventh and twelfth 
month.  Specifically, the approval hazard in the two months before the ten-month FDAMA 
clock deadline is twelve times greater than the approval hazard in the month after the review 
deadline has elapsed ( 2χ = 11.58; p = 0.0006).   
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Figure 2 shows that these patterns apply to priority drugs as well, where the deadline has 
been stable at six months over the 1993-2004 period. 
 
 
III. Deadline Institutions and Post-marketing Regulatory Events: Data and 
Measures. 
 
The available review time evidence, then, generally supports that hypothesis that the 
PDUFA clocks have influenced FDA review behavior.  We now turn to investigate the 
second hypothesis, namely that the review clock institutions have exercised an influence 
upon not just the timing but also the quality of the FDA’s decision, including and especially 
the dimensions of drug safety and postmarketing regulatory issues.6  While some analysts 
(including the FDA itself) have examined whether the overall rate of drug safety problems has 
risen or fallen since 1993,7 we conduct a different, more focused comparison.  We compare 
the incidence of postmarketing and regulatory issues for pre-deadline approvals to post-
deadline approvals during the user-fee area.  In other words, we compare the postmarketing 
experiences of drugs approved in the months before the PDUFA clock deadline to the 
postmarketing experiences for drugs approved in the months after the deadline.   
 
Measures of Postmarketing Regulatory Events (PMREs).  To assess whether pre-
deadline approvals are associated with postmarketing issues at a greater rate than post-
deadline approvals, we examine six measures of post-marketing regulatory events.  The first 
four (two measures of safety-related labeling revisions and black-box warnings, and two 
measures of safety-based withdrawals) are directly concerned with safety issues.  Three other 
variables (significant labeling revisions, labeling revisions for changes in patient population, 
and manufacturing changes) are often but not always concerned with issues of safety. We 
also examine one variable that is not explicitly safety-related, but which may reveal issues of 
efficacy and clinical uptake: the rate at which dosage-forms of the drug are discontinued 
from the market place. 
 
Black box warnings and labeling revisions. We use two separate measures of 
postmarketing safety-related labeling revision.  Our first measure is whether or not the 
approved drug has received a black-box warning for a significant new adverse drug reaction 
(ADR) as identified and reported by Lasser and colleagues (2002).  Lasser and colleagues 
relied upon changes to drug descriptions in the Physician’s Desk Reference to compile their list.  

                                                 
6 We  use the term “quality” of decisions sparingly here, and only as shorthand.  The hypothesis in question is 
quite particular: do the PDUFA review time goals influence not only the timing of the FDA’s review behavior 
but also other features of the drug’s clinical profile that are observed in its postmarketing phase?  Whether the 
quality of the FDA’s judgments is affected is a much more difficult issue to address and is beyond the scope of 
this paper. 
 
7 M. Meadows, “Why Drugs Get Pulled Off the Market,” FDA Consumer 36 (1) (January-February 2002).  L. D. 
Sasich, “Comments before the Food and Drug Administration's Public Meeting on the Prescription Drug User 
Fee Act (PDUFA),” September 15, 2000, (HRG Publication #1536); URL: 
http://www.citizen.org/publications/print_release.cfm?ID=6737 [accessed December 22, 2005]; T. Moore, 
Psaty, B. M., Furberg, C. D. “Time to Act on Drug Safety,” JAMA, 279(19) (1998):1571-1573.   
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Using this measure has the disadvantage of excluding drugs very recently approved from the 
sample – Lasser and colleagues stopped their list in 2000 – making it difficult to test for 
FDAMA-related effects, which could only be observed for molecules submitted after 
September 1997.   
 
Our second measure is a list of post-approval drug safety warnings compiled by physicians 
and epidemiologists at the Kansas University Medical Center (KUMC).8  The KUMC list is 
larger than the Lasser list, most likely because the KUMC list retrieves information directly 
from the Food and Drug Administration, whereas Lasser and co-authors require a change in 
the Physician’s Desk Reference in order to code a drug as having been given a black box warning 
for a newly recognized ADR. 
 
Safety-based withdrawals.  We examine safety-related market withdrawals from the global 
market. Our data on withdrawals are from two sources.  First, from SCRIPS reports and 
Pharmaprojects, we identified all NMEs that had been approved in the United States and 
then were withdrawn for safety reasons in at least one industrialized nation since 1980.  In 
Pharmaprojects, this includes most all European nations as well as Japan, Australia, New 
Zealand, India and the United States.  It is worth noting that very few drugs are withdrawn 
in just one country. 
 
Second, we also examine safety-related withdrawals from Canada since 1963. Lexchin (2002) 
tabulates safety-based drug withdrawals from the Canadian market, though he notes that 
Health Canada’s drug withdrawal information is non systematic and that his list “might not 
be complete.”   
 
We examine a wider sample of withdrawals rather than U.S. withdrawals only, because we 
would like a measure of withdrawals that is less dependent upon FDA decision making.  As 
recent controversies might suggest, regulatory agencies like the FDA may be less willing to 
revisit their own decisions, which casts doubt upon the FDA’s own drug withdrawal 
decisions as a measure for “regulatory error.”9 None of this suggests that adding non-U.S. 
withdrawals produces a better indicator, nor are global withdrawals fully independent of U.S. 
regulatory decisions.  It is certainly plausible, however, that non-U.S. withdrawals are less 
dependent upon initial FDA drug review than U.S. withdrawals are. 
 
Changes in patient population on officially approved labeling.  From the Drugs@FDA 
database (accessed December 2004), we calculated the number of official alterations in 
patient population for each new molecular entity, and divided these by the number of years 

                                                 
8 The KUMC maintains an information page for its formulary at 
http://www.formularyproductions.com/kumc/ (accessed October 16, 2005), which has direct links to lists of 
drugs with black box warnings as well as FDA safety issues.  The KUMC list was researched and compiled 
under the direction of Joyce Generali, MS, RPh, FASHP, Director of Drug Information and Clinical Professor, 
Kansas University Medical Center.   
 
9 For a recent suggestion that the FDA regulates postmarketing risks more loosely than in other countries, see 
M. Kaufman, S. Vedantam, “Pregnant Women Warned by FDA to Avoid Paxil,” Washington Post (December 9, 
2005): A3.  More generally, see D.P. Carpenter, M.M. Ting, “The political logic of regulatory error,” Nature 
Reviews – Drug Discovery 4(10) (October 2005): 819-23. 
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that the drug had been on the U.S. market.  It is important to remember that not all these 
changes are safety-related.  But clearly some important ones are.  For instance, CDER 
recently made effective a patient population change for Avandia (rosiglitazone), based upon 
poor efficacy results for a sub-population.  The official announcement reads: “Provides for 
changes to the labeling describing the results of a study comparing the effects of Avandia to 
those of metformin in children with type 2 diabetes mellitus, aged 10-17 years. An indication 
for the use of Avandia in this population is not supported by the results of the study.” 

 
Manufacturing process revisions – From the Drugs@FDA database (accessed December 
2004), we calculated the number of official revisions in manufacturing process for each new 
molecular entity, and divided these by the number of years that the drug had been on the 
U.S. market.   
 
Product (dosage form) discontinuation.  What does discontinuation imply?  From FDA 
website, discontinuation “indicates drugs that have been discontinued from marketing or 
that have had their approvals withdrawn for other than safety or efficacy reasons,” [accessed 
July 28, 2005].  In many such cases, this is due to weak clinical demand.10  Discontinuation is 
a code (“3”) in the Product Market Status of approved products, as tracked by CDER, and 
available at Drugs@FDA website.  It tracks discontinuation of particular dosage and 
administration versions of an NDA.  We note that such discontinuations are not explicitly or 
officially safety or efficacy-related.  They are, however, positively correlated with global 
market withdrawals [probit coefficient = 2.63 (0.98); p = 0.008]. Very often, product dosage 
forms are discontinued due to poor utilization patterns (hence poor sales) on the market. 
Dosage-form discontinuation may, we note, signify safety issues as well.  When less glaring 
safety problems have arisen and have been noticed by physicians and clinical specialists, 
clinical demand for the drug may be dampened as a result.  This is a case where safety may 
be a reason for withdrawal of dosage-form but not of the molecule entirely, hence a lesser 
safety-related issue may be emerging here without being widely observed or publicized.  This 
possibility deserves separate analysis and lies outside the confines of this paper. 
 
Another possibility would be to examine adverse event reports (AERs), which have received 
some study in recent years (Olson 2004).  For several reasons – mainly because adverse 
event reports are often inconsistent and are heavily dependent upon physicians’ reporting 
patterns – we leave analysis of these data to another paper. Our aim is instead to focus on 
actions that the FDA and firms must take to revisit approved drugs, and to leave actions that are 
more directly dependent upon physician reporting for other analyses. 
 

[Table 1 about here.] 
 

                                                 
10 See for instance the discontinuation of Agenerase® (amprenavir) 150 mg capsules by GlaxoSmithKline in 
December 2004.  According to the company’s letter to the FDA, the product was discontinued “because the 
clinical demand for AGENERASE 150 mg capsules has diminished significantly. Additionally, in the recent 
treatment recommendations by the Department for Health and Human Services (DHHS), AGENERASE is 
no longer recommended as a component of a preferred or alternative initial regimen.” “Dear Healthcare 
Professional” letter, September 2004. http://www.fda.gov/cder/drug/shortages/AgeneraseLetter_E2.pdf 
(accessed November 2, 2005). 
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We report summary statistics for these measures in Table 1.  As anticipated, all of the 
measures are characterized by rarity, though the converted annual rate data are characterized 
by greater continuity. 
 
 
IV. Deadline Institutions and Post-marketing Regulatory Events: Specification 
and Estimation of Generalized Linear Models. 
 
Drugs vary in numerous ways that are unobservable to the statistical analyst, and even to the 
researchers who study them.  One advantage of a GLM testing framework is that it allows 
the analyst to control statistically for numerous sources of variation as long as the sample 
size permits it.  For our sample of standard new molecular entities, we introduce two vectors 
of parameters for estimation – a set of terms for each primary indication (modeled either as 
a fixed or a random effect) and a set of indicator variables for the firm sponsoring the 
application.  The immediate result of this estimation strategy is that hundreds of terms and 
parameters are added to the models we estimate.  
 
We employ the generalized linear model (GLM) framework (McCullagh and Nelder 1992) 
for panel data and mixed effects models.  Recall that for any drug i, its primary indication is 
indexed byψ and its sponsor byκ . Recall, too, that Sκ and Dψ serve as binary indicators for 
the drug’s sponsor and primary indication, respectively. We observe several different 
indicators of a post-marketing regulatory event, which we denote by yPMRE, and we estimate 
models of the form 
 

( )PMRE S
i i iy f S Z u eψκ κ ψκ ψ ψκα γ ′= + + +                      (5a) 

 or 
 ( )PMRE S D

i i iy f S D Z eψκ κ ψ ψκ ψκα α γ ′= + + + , (5b) 
 
where f is a function (whose arguments are always linear) to be specified, where u is a 
random effect term which is assumed uncorrelated with Z, where Sα and Dα are fixed 
effects coefficients, and where e is a model disturbance.  Notice that primary-indication-
specific effects are modeled either as random effects or as fixed effects. 
 
For “mixed-effects” models which embed a random-effect term for the primary indication 
and a hierarchical structure, we employ methods described by Gelman and Hill (2007) for 
the analysis of our data.  In particular, we analyze our models by Markov Chain Monte Carlo 
posterior distribution sampling.  This technique allows for diagnostic analysis of the 
convergence of the maximum likelihood algorithm and also permits an analysis of overfitting 
and parameter estimate stability. (All linear mixed-effects models are estimated in R (or S-
Plus) using the lmer functions authored by Bates and the mcsamp post-estimation 
commands of Gelman.)  We do not report these estimates here but they are available on-line 
at http://people.hmdc.harvard.edu/~dcarpent/pdufaclock-mcsamp-run20070701.pdf 
(accessed July 23, 2007). 
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We note here one important feature of our modeling strategy, namely its assignment of 
sponsor-specific and indication-specific terms to each drug.  Our indexation of primary 
indications is much more refined than that used by other analysts of FDA drug approval 
(e.g., Lasser 2002, Olson 1997, Carpenter 2002, Olson 2004).  Other analysts control for 
generic therapeutic category terms (for example, a binary indicator for all anti-neoplastic 
drugs or for all central nervous system (CNS) drugs) and often for continuously valued firm-
level covariates, but not for particular primary indications and not for firm-specific fixed 
effects.  Because drugs are assigned to divisions based primarily upon their primary 
indication, the primary indication index ψ is a sufficient index for CDER divisions, so any 
static factors associated with the division level are captured by this set of hundreds of terms.   
 
We acknowledge, of course, that our modeling strategy also embeds the disadvantage that 
too many terms may be introduced into estimation.  We have estimated the models with 
coarser categories and these models generally produce larger coefficients and smaller 
standard errors for our variables of interest (indicators for pre-deadline approvals).  In this 
sense, then, the estimates we report are “conservative” in the sense that larger and more 
robust estimates are possible. 
 
For rare events such as safety-based withdrawals, we supplement our models with extreme 
value regressions which account for the infrequency of these events.  In this case the link 
function of the GLM is a Gompertz or Gumbel extreme-value link function.  Where we can 
retrieve standard errors from these regressions, we do so.  We then assess differences in 
event rates from pre-deadline approvals to post-deadline approvals.  One advantage of the 
multivariate analyses is that we can control statistically for a wide variety of indication- and 
therapy-specific indicator variables, as well as for effects of the sponsoring firm.  We can 
also directly compare the rate of postmarketing regulatory events from before and after the 
various user fee acts, whereas cross-tabulations require separate analyses. 
 
For each of the regulatory event variables, we regress the regulatory event variable on a 
battery of indicator variables, the submission year (to capture the time trend) and selected 
other continuous measures. Because we estimate coefficients for the deadline terms, our 
tests for the user-fee deadline effects are embedded within a larger statistical specification.  
We create the following variables: 
 

1. Pre-Deadline Approval. In particular, for any deadline month and its preceding 
month ( , 1deadline deadlineτ τ − ), we construct a “pre-deadline” approval indicator ZPRE 
scored one if the drug in question was approved in deadlineτ or 1deadlineτ − , and 0 
otherwise. Where the deadline is 12 months, for instance, then approvals in the 11th 
and 12th month after submission are coded one. 
 
2. Post-Deadline Approval.  Similarly, for any deadline month deadlineτ , we construct a 
“post-deadline” approval indicator ZPOST scored one if the drug in question was 
approved in 1deadlineτ + or 2deadlineτ + , and 0 otherwise. Where the deadline is 12 
months, for instance, then approvals in the 13th and 14th month are coded one. 
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3. Month Indicators.  We also create indicator variables for approvals during given 
months as a form of control.  When for instance the deadline is at 12 months, we 
also seek to identify those drugs that were approved in the eleventh and twelfth 
months of drug review before PDUFA.  This permits a comparison of (a) drugs 
approved in the 11th and 12th months when these months were pre-deadline months 
to (b) drugs approved in the 11th and 12th months where no deadlines were attached 
(before September 1992).  
 
4. “Early Approval” Indicators.  We also seek to compare post-market regulatory 
event rates for drugs that are approved far earlier than the review time goals.  For 
standard NMEs, we construct an “early approval” indicator ZEARLY scored one if the 
drug in question was approved in the first six months after submission and zero 
otherwise.  For priority NMEs the same variable is scored one if the drug was 
approved in the first four months after submission.   
 
5. Cox-Weighted Deadline Indicators.  Because our statistical analysis of FDA review 
times allows for empirical estimation of approval hazard ratios, we can also weight 
the deadline variables by the hazard ratio appropriate to the particular month of 
approval.  This results in a continuously-valued deadline assignment measure, which 
is computed as 
 

( )
( )

( )
( )

PRE-COX 1

1 1

ˆ ˆ, ,
Z  = 1 1 1

, ,
deadline deadlinedeadline deadlineh X h X

h X h X
τ τ

τ τ

β β
τ τ

β β
−

= =

   + −      (6a) 

Where [ ]1 ⋅  is the indicator function scored 1 if the drug in question was approved in 
the pre-deadline months in deadlineτ or 1deadlineτ −  and scored zero otherwise.  Similarly, 
the post-deadline condition can be weighted as 
 

( )
( )

( )
( )

POST-COX 1 2

1 1

ˆ ˆ, ,
Z  = 1 1 1 2

, ,
deadline deadlinedeadline deadlineh X h X
h X h X
τ τ

τ τ

β β
τ τ

β β
+ +

= =

   + + +     (6b) 

 
Before versus After Deadline Comparisons.  Our most common comparison is between NMEs 
approved in the two months before the deadline and NMEs approved in the two months 
afterwards.  For instance, for NMEs submitted to CDER under the first PFUFA Act 
(September 1, 2002 to September 30, 1997), we can code non-priority drugs approved in the 
eleventh and twelfth months of the review cycle as “pre-deadline” approvals, and we can 
code drugs approved in the thirteenth and fourteenth months of review as “post-deadline” 
approvals. Because the semi-parametric analyses in the previous section point to the two 
months before the deadline as the time when relative hazards are heightened, our 
comparison is based upon the empirical and statistical findings in the previous section. 
However, we have also examined the immediate month before and month after the deadline 
and have arrived at similar results.11 
                                                 
11 Another possibility is measuring “time-to-deadline” in weeks and days, but given that the user-fee legislation 
encourages the FDA (and companies) to think in terms of months, we have avoided this measure.  Estimating 
week-specific parameters leaves us with too little data to estimate parameters for every week or every month of 
the review cycle, especially for drugs submitted after 1993. 
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Using the ZPRE and ZPOST terms, we can compute effect estimates PREγ  and POSTγ in the 
GLM framework.  Retrieving these estimates and associated information from the estimated 
covariance matrix, we can test for the equality of PREγ  and POSTγ by computing the 
following Wald-like statistic.   
 

( )( ) ( )( ) ( )( )
1

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆPRE POST PRE POST PRE POSTW U q q U qI

γ γ γ γ γ γ
γ γ γ γ γ γ

−

     = = =          
′= − − −  (7a) 

 
where U is the “discrepancy” vector, q is a set of restrictions, and I is the information matrix 
or the covariance matrix.  Letting ˆ =Cγ q be the set of linear restrictions in which PREγ  and 

POSTγ are held identical, the discrepancy vector is ˆCγ - q .   
 
Deadline Month Approval versus “Early” Approval Comparisons.  A similar test statistic can be 
computed for comparing whether the PMRE rate is higher for pre-deadline approvals than 
among even earlier approvals, as follows: 
 

( )( ) ( )( ) ( )( )
1

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆPRE EARLY PRE EARLY PRE EARLYW U q q U qI

γ γ γ γ γ γ
γ γ γ γ γ γ

−

     = = =          
′= − − −     (7b) 

 
Deadline Month versus pre-User-Fee (same month) Comparisons.  One possibility, of course, is that 
some unobserved factor that just happens to be associated with deadline-month approvals 
would produce these results.  As this is an observational study, we cannot eliminate this 
possibility.  We can, however, perform several checks on the data.  First, we can conduct the 
same “before-and-after” comparison as if the deadlines were in place before 1992, as a check 
upon our analyses.  In other words, we can code approvals in the 11th and 12th months before 
the user-fee era as “pre-deadline” approvals, even though no user-fee review clock was in 
place, and we can compare postmarketing regulatory events for these drugs and drugs 
approved in the 13th and 14th months.12   
 
Accounting for Separation Bias: Alternative Procedures using Firth’s Bias Correction, Efficient Monte-
Carlo Estimation, and Exact Logistic Regression for smaller samples.  In the case of withdrawals and 

                                                                                                                                                 
 
12 In other papers we consider additional statistical analyses to deal with this issue.  In particular, in Bowers, 
Carpenter, et al. (2007) we conduct a different non-parametric matching analyses using robust and genetic 
matching techniques, where drugs are matched on epidemiological characteristics of their primary indication 
(incidence of primary indication, hospitalization rate of primary indication, age-adjusted death rate of primary 
indication, and various indicators of broadcast media coverage given to primary indication, and the size of 
CDER’s staff at the time of the NME’s submission). 

Finally, for illustrative purposes we cross-tabulate the regulatory event variables in question – 
withdrawals, warnings, discontinuations – with a binary variable coded “1” if the drug in question was 
approved before the deadline and scored “0” if a “control” condition was met.  The control condition can be 
“all other approvals” or it can be a “post-deadline” approval.    We then employ an exact probability test to test 
the hypothesis of a difference in regulatory event rates before and after the deadline approvals.  For some of 
the variables we also employ extreme-value regressions because the number of “positive” events is so small. 
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black-box warnings, our outcome measures are binary, and because our independent 
variables are also binary, this can lead to separation bias for datasets without balance (King 
and Ryan 2002, Mehta, Patel and Senchaudhuri 2000).  In separation bias, the prefect 
prediction of a subset of the binary response by a vector or subvector of the independent 
variables (the Z’s, in our GLMs), leads to estimates of parameter effect that are biased away 
from zero (see Firth 1993, King and Ryan 2002).  We use three methods to address this 
problem.  The first two of these methods employ larger samples and avoid exact methods, 
while the third uses exact logistic regression. 
 
The first method – the bias correction introduced by Firth (1993) – is to employ an 
estimator for larger samples where exact logistic regression is infeasible and where efficient 
Monte Carlo estimation (Mehta, Patel and Sanchaudhuri 2000) is also computationally 
infeasible.  We classify either of these methods as computationally “infeasible” when the 
estimated computation time was greater than 240 hours (ten days).13  These models are 
binary logistic regression models, and the methods and penalized likelihood function are as 
reported in Firth (1993). 
 
Second, when possible we use the efficient Monte Carlo method for logistic regression 
developed by Mehta, Patel and Senchaudhuri (2000).  This estimator has the advantage of 
having been used for observational data (see the examples using fraudulent automobile 
insurance claims in Mehta, Patel and Senchaudhuri (2000)). This method becomes 
computationally infeasible in the presence of many covariates, so we employ it only for 
models with few covariates.  By necessity, this excludes the fixed-effects and random-effects 
models estimated in the GLM framework, and noted above.  For details of the 
computational method, see Mehta, Patel and Senchaudhuri (2000: 99-103). 
 
Third and finally, we occasionally draw up small samples for exemplary use and use exact 
logistic regression (Mehta and Patel 1995; Tritchler 1984).  We performed all three 
separation-adjustment methods – (1) MLE with Firth’s penalty-adjusted likelihood bias 
correction, (2) efficient Monte Carlo estimation of logistic regression, and (3) exact logistic 
regression – with LogXact7TM Software (Cambridge, Massachusetts, Cytel Corporation, 
2006).   
 
Results: GLM Estimation 
 

[Tables 2A, 2B, 2C, 2D, and 2E about here.] 
 
We report the generalized linear model results in Tables 2 and 3.  Tables 2A through 2E 
report estimated GLM models for post-marketing regulatory events for non-priority 
(“standard”) NMEs, while Tables 3A through 3D report models for priority NMEs.  The 
GLM estimates are, in general, rather stable across specifications. Across the replications for 
                                                 
13 Estimated computation times are reported by LogXact software.  Mehta, Cytel, and Senchaudhuri (2000) 
report that their applications “were performed on a Pentium 200 PC” and that “Computation times for 
network building plus Monte Carlo sampling ranged between 1 and 20 minutes” (2000: 103)  Hence our cutoff 
for “feasibility” lies well above the most arduous models computed by Mehta, Cytel, and Senchaudhuri (2000).  
For most of the models we chose as computationally infeasible, LogXact reported estimated computation times 
of 1000 hours or more.  
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standard NMEs, coefficient estimates change signs across models only four times (out of 
104 estimates). 
 
Beyond this, the coefficient estimates for pre-deadline indicators are also consistent in their 
behavior.  Coefficient estimates for pre-deadline approvals are positive in 27 of 34 estimates 
for standard NMEs, are positive and statistically significant in 16 of these 34 estimates, and 
are negative in 7 estimates and negative and significant in three.  (All three of these occur in 
one regression and for one term: the pre-deadline FDAMA variable for postmarket 
manufacturing revisions.)  Coefficient estimates for pre-deadline indicators are positive in 14 
of the 16 estimates for priority drugs, and seven of these estimates are statistically significant. 
Across both categories, then, 41 of 50 estimated pre-deadline effects are positive, 30 of 50 
are positive and statistically differentiable from zero and 3 are negative and statistically 
differentiable from zero.  
 
Comparison of Pre-Deadline with Post-Deadline Approvals: Results from GLM 
Models.  Comparison of pre-deadline and post-deadline approvals is conducted by 
computing the relevant test statistic.  For each model, this statistic is reported in the second 
portion of the table (“Parameter Estimate Comparisons”) with its associated probability 
below it.  For standard NMEs, pre-deadline approvals are significantly more likely to 
experience dosage-form discontinuation (particularly for FDAMA deadlines), postmarket 
patient population label changes (for PDUFA deadlines), postmarket manufacturing 
revisions (for PDUFA deadlines), and Canadian and global safety-based withdrawals.14 
 
Comparison of 11th-month and 12th-month Approvals under PDUFA and 11th-month 
and 12th-month Approvals Later Regimes.  Another quasi experiment is possible if we 
examine the set of drugs approved in the eleventh or twelfth months of the review cycle 
since the enactment of PDUFA in 1992.  Under the first user-fee act (September 1992 to 
September 1997) these were “pre-deadline” approvals.  With FDAMA and subsequent 
legislation (October 1997 and after), however, these are “post-deadline” approvals.  Our 
hypothesis suggests that 11th and 12th month approvals under PDUFA I should be more 
likely to experience post-market regulatory events than 11th and 12th month approvals in the 
years since. 
 
If one finding emerges most consistently from our estimates, it is that the PMRE rate for 
11th and 12th month approvals under the first user-fee act is significantly higher than the 
PMRE rate for 11th and 12th month approvals under the user-fee acts since September 1997.  
Eleventh and twelfth month approvals are more likely to experience dosage-form 
discontinuation, patient population shifts, postmarket manufacturing revisions, and safety-
based withdrawals (p < 0.03 in nine of ten tests).  While we cannot rule out other changes 
between PDUFA I and PDUFA II, these results are highly suggestive that pre- versus post-
deadline approval status is correlated with post-market issues. 
 

                                                 
14 For postmarket patient population labeling changes, the differential is statistically significant in the model 
with fixed effects (p = 0.0081) but lies just above the p = 0.05 threshold for the random effects model (p = 
0.0507).  The statistical significance of these differentials is also model dependent for safety-based withdrawals 
in Tables 2D and 2E. 
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Comparison of Pre-Deadline with Pre-PDUFA approvals of the same cycle month: 
Were these differential patterns of post-marketing regulatory events in evidence before the 
user-fee acts?  In other words, were there abrupt changes in the rate of postmarketing 
regulatory events depending on whether a drug was approved in (1) the 9th and 10th months, 
(2) the 11th and 12th months, or (3) the 13th and 14th months?  Our analyses for non-priority 
drugs approved before September 1992 suggest not.  These tests appear in the third and fifth 
rows of the “Parameter Estimate Comparisons portion of Tables 2A through 2E. In only 
two cases (of thirty nine possible) do the relevant categorical variables reach statistical 
significance (p > 0.2 in all other regressions), and PMRE rate differences among 9th and 10th 
month approvals, 11th and 12th month approvals, and 13th and 14th month approvals are not 
evident.  For priority drugs, similar patterns are evident, as 5th- and 6th-month approvals 
were, before the user-fee acts, if anything less likely to experience postmarket regulatory 
issues than approvals in other months. 
 
Comparison of Pre-Deadline with “Early” Approvals. The possibility remains that the 
behavioral sorting of drugs into pre-deadline approval versus post-deadline approval is based 
on higher perceived efficacy, and in fact that drugs with higher efficacy are characterized by 
greater post-marketing regulatory events.  Again we cannot rule out this possibility, though 
we note that the greater incidence of dosage-form discontinuations among pre-deadline 
approvals sheds doubt upon this rival explanation.  If pre-deadline approvals are being 
discontinued from clinical utilization and the “marketplace” at higher rates, it is more 
difficult to sustain the hypothesis that pre-deadline approvals have higher therapeutic value 
than those approved afterwards, at least in the short term. 
 
A more compelling test, perhaps, is to examine those drugs that are approved “very early” – 
within the first six months for standard NMEs, and within the first four months for priority 
NMEs – and to ask whether these “quick approvals” are also characterized by postmarketing 
issues.  These tests appear in the bottom rows of the tables, which report F-statistics and 
chi-squared statistics for the equivalence of  PREγ  and EARLYγ .  For standard NMEs, 
equivalence of “early” and “pre-deadline” approval PMRE rates can be rejected for dosage-
form discontinuations, for postmarket manufacturing revisions (PDUFA deadlines) for 
Canadian safety withdrawals (PDUFA deadlines).  For priority drugs, inference is more 
complicated because in no case did an approval in the first four months of the review cycle 
for a priority drug in the last twenty years experience a global or Canadian market 
withdrawal.  From maximum likelihood models with categorical data, the relevant test 
statistic is infinite and no reference probability can be retrieved.  Using a linear model, the 
equivalence of PREγ  and EARLYγ can be rejected in global safety withdrawals.  Equivalence of 
pre-deadline and early approval PMRE rates can also be rejected for black-box warnings as 
coded by Lasser and colleagues (2002). 
 
More broadly, there are only two cases – both black-box warnings, as coded by Lasser and 
colleagues (2002) and KUMC, respectively – where the value of the early-approval 
coefficient rests numerically above the deadline coefficients.  In neither of these cases is the 
difference statistically significant.  Put differently, we can in numerous cases accept the null 
of equivalence in favor of the alternative hypothesis that the pre-deadline approval PMRE 
rates are higher than “early” approval PMRE rates.  We cannot once reject the null of 



 20

equivalence in favor of the alternative hypothesis that the early approval PMRE rates are 
higher than pre-deadline approval PMRE rates. 
 

[Tables 4A-4D about here.] 
 
Results from Efficient Logistic Regression and Firth-Corrected Logistic Regression.  
As an additional check on our results, we estimate reduced models using methods for 
addressing separation bias and small-sample inference problems.  In Tables 4A through 4D, 
we report the results of logistic regressions where either Firth-corrected maximum likelihood 
estimation or efficient Monte Carlo estimation is used.  In one case (Canadian safety 
withdrawals) we are able to stratify the sample so as to produce “informative” strata (with a 
smaller sample size) and we report an additional set of results for that estimation (Table 4A-
2). 
 
In all of these tables, we have combined all standard and priority NMEs and have generated 
one “pre-deadline approval” variable, scored one if (a) the drug is a standard NME and was 
approved in the 11th or 12th month of the review cycle under PDUFA, or if (b) the drug is a 
standard NME and was approved in the 9th or 10th month of the review cycle under 
FDAMA or later user-fee laws, or if (c) the drug is a priority NME and was approved in the 
5th or 6th month of the review cycle under any of the user-fee laws.  (The “pre-deadline 
approval” variable is scored zero if none of the conditions (a)-(c) hold.) We add the year of 
NME submission as a control variable to these regressions.   
 
The combination of the different deadlines into a single variable assumes no heterogeneity in 
the different deadline effects.  In other words, the twelve-month deadline and the ten-month 
deadline are assumed equal in effect. This assumption does not appear to be unwarranted.  
The coefficients for the different deadline measures in Tables 2A through 2E can rarely be 
differentiated statistically.  Only for Canadian withdrawals are the different deadlines 
statistically distinct as assessed by Wald test. 
 
In Tables 4A-1 and 4A-2, the regressions show a significant positive association between 
pre-deadline approvals and safety withdrawals in Canada, using a sample of NMEs approved 
in the U.S. from 1962 to the present.  The sample size is smaller for the stratified estimation 
as “noninformative” strata are deleted. In Table 4B, similar results are shown for global 
safety withdrawals since 1980.  Here the Firth penalized likelihood method results in an 
estimate on the pre-deadline approval variable that is statistically differentiable from zero at 
the p < 0.05 level, but the Monte Carlo method results in an estimate that is statistically non-
zero only at the p < 0.10 level.   
 
For the black-box and safety warning variables, we observe positive but statistically 
insignificant coefficients for the analyses of warnings as coded by Lasser and colleagues 
(2002) (Table 4C), and positive and statistically significant coefficients for warnings as coded 
on the KUMC list. 
 
Two features of the estimations in Table 4A through 4D are worth noting.  First, notice that, 
as claimed by Mehta and Patel, analysis of rather large samples is possible with efficient 
Monte Carlo logistic regression.  These are sample sizes that are infeasible for exact logistic 
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regression.  Second, notice that Monte Carlo (CMLE) standard errors are larger and 
corresponding p-values are smaller than the respective estimates for Firth-corrected MLE. 
 

[Table 4E about here.] 
 

Results from Exact Logistic Regression. Finally, for subsamples where the sample size 
allows for estimation of an exact logistic regression, we have created a single “pre-deadline” 
approval variable for all standard NMEs and have restricted our attention to NMEs 
submitted since January 1993.  In Table 4E, we report results from exact logistic regression 
for safety-based withdrawals (Canadian, 1962-present, and global, 1981-present) and dosage-
form discontinuation.  For all three binary variables, a pre-deadline approval is positively 
associated with the probability of withdrawal, even as each form of withdrawal has become 
less likely in terms of the overall time trend.  Exact p-values are larger than asymptotic p-
values, but all are below the 0.05 level for these three withdrawal measures.  We used Cytel 
LogXact7 software to produce these estimates, and the output for these estimations is 
available upon request. 
 
We recognize that the reported exact and efficient logistic regressions are rather brute in that 
one deadline variable is used and there is only one covariate.  Monte Carlo efficient and 
exact logistic estimators compel these sorts of restrictions unless the analyst is willing to 
allow hundreds or thousands of hours for estimation of the models to converge.  We 
recognize that more covariates are possible, and for analyses with many more covariates 
(hundreds more, in some cases) we simply direct the reader to Tables 2 and 3.   
 
 
Statistical Summary, Discussion and Conclusion 
 

[Table 5 about here.] 
 
A Summary.  We now turn to summarize the analyses reported in Tables 2A-2E and 3A-
3D.  We do so in Table 4, which collects summary results for standard drugs.  We first 
calculate differentials in rates of regulatory events.  We do so by computing model 
coefficient differences, subtracting the “control” condition coefficient from the pre-deadline 
approval coefficient, and then dividing this differential by the mean of the relevant PMRE 
variable.  Specifically, we compute the following differential for pre-deadline approvals 
versus post-deadline approvals 
 

ˆ ˆPRE POST
PMRE

PREvPOST PMRE
i

Diff
yψκ

γ γ−
=  

 
We have already tested the hypothesis of difference between PREγ  and POSTγ by computing 
statistics of the form W as described above (equations 7a and 7b).  Using the PMRE

PREvPOSTDiff  
statistic, we comparing [1] the 11th and 12th month (pre-deadline) approvals to the 13th and 
14th month (post-deadline) approvals for PDUFA (1993-1997), [2] the 11th and 12th month 
(pre-deadline) approvals for PDUFA to the 11th and 12th month (post-deadline) approvals 
for FDAMA, [3] the 11th and 12th month (pre-deadline) approvals for PDUFA to the 11th 
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and 12th month approvals before any user-fee act (before 1993), and [4] the 9th and 10th 
month approvals under FDAMA to the 11th and 12th month approvals under FDAMA.   
 
Results from these computations appear in Table 5. 
 
The rate at which drugs experience post-marketing regulatory events is appreciably higher 
for drugs approved in the months before the PDUFA clock deadlines, compared to other 
drugs, especially those approved in the months just following the elapsing of the deadline.  
For non-priority molecules, pre-deadline approvals are associated with three to five times the 
rate of safety-based withdrawal from the global market and Canadian markets.  Pre-deadline 
approvals have two to three times as patient population labeling changes per year of 
marketing (p < 0.05) and, for drugs approved since FDAMA, over five times the rate of 
product discontinuations per year (p < 0.0001). 
 
Again, some of the most compelling results come from the second row of differential 
estimates in Table 4, where the event rates for 11th- and 12th-month approvals are compared 
from the first PDUFA law, when these months indicated pre-deadline approvals, to the 
second FDAMA law (after 1997), when the 11th and 12th month approvals fall after the 
deadline.  In other words, when the eleventh and twelfth months of the review cycle are pre-
deadline months (1993-1997), they are associated with a higher rate of postmarketing issues.  
However, when the same eleventh and twelfth months of review are post-deadline months 
(1998-present), they are associated with much lower rates of postmarketing regulatory events.  
(p < 0.0001 for global withdrawals, dosage-form discontinuation and manufacturing changes;  
p < 0.01 for Canadian withdrawals and patient population changes). Here the differentials 
are positive and strikingly large in all eight measures and statistically significant in five of 
eight measures.15 
 
We note that our results are not uniform, and that some of them vary by specification of the 
model (hence our preference for reporting multiple specifications of the GLMs).  In the 
main, however, it is worth noting that the statistically significant results are almost always 
positive partial correlations.  That is, we observe very few statistically significant negative 
relationships between deadline approvals and post-marketing regulatory events (PMREs).  
We do observe a large number of statistically significant positive relationships between 
deadline approvals and PMRE rates, and these hold across statistical specifications.  
 
It also merits remark that the positive partial correlations between pre-deadline approvals 
and PMRE rates appear stronger and more robust for standard approvals than for priority 
approvals.  This is not to say that there are not still some appreciable patterns for priority 
approvals.  Such patterns are in evidence.  Yet the statistical results are generally more 
consistent and larger for standard approvals.  If this statistical difference reflects an 
underlying difference in decisions across the two categories of NDAs, it may be that the 
FDA’s acceleration for priority review was less difficult and less drastic at CDER than for 
standard drugs.  By this line of reasoning, the FDA was in the late 1980s and early 1990s 

                                                 
15 We also estimated random-effects models, as well as generalized estimating equations models.  The results 
are substantively identical to those reported here, though in some cases estimation of more non-linear models 
standard errors cannot be retrieved. 
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already moving rather quickly on priority molecules, hence the institutional disruption of the 
six-month deadline for priority drugs was less than that caused by the deadlines for standard 
drugs.  Testing this claim is beyond the scope of the present paper and would require data 
that we do not have. 
 
Methodological Implications.  Our results have several methodological implications for 
those examining regulatory decision making and its policy implications.  First, our analyses 
point to particular institutional forms – deadlines – as having effects in ways that be reliably 
and rigorously measured.  Yet in order to uncover such effects, analysts must employ 
methods different from (and more refined than) the simplistic comparisons of means and 
least squares regressions that have dominated regulatory analysis in the past. As concerns the 
FDA, our investigations suggest that numerous analysts of post-marketing safety, including 
the Administration itself, may be looking in the wrong place for policy effects of the user-fee 
law.  Analysts ought not, we think, to be conducting not generic comparisons of drugs 
approved before and after the user-fee act.  Instead, analyses of the laws’ effects should be 
targeted to the specific features of the law, of which the review clock deadlines are the most 
notable and most measurable. 
 
Second, as it concerns the user-fee law, our findings represent something of a middle ground 
between those who believe that PDUFA’s acceleration of drug review times was a result of 
its institutional features (Olson 2000, 2004) and those who claim that it was a product of 
more staff (Carpenter et al., 2003).  While we find support for the hypothesis that additional 
resources have accelerated review, we find a weaker relationship between resources and 
review times than do previous analyses by Carpenter and colleagues.  We are able to test 
different hypotheses about the cause of drug review acceleration jointly, and we find in some 
respects that both resources and incentives influence molecular approval times. 
 
Conclusion.  Analysis of new molecular entity data from the last fifty years suggests that the 
deadlines of PDUFA and FDAMA have introduced immense temporal discontinuities into 
FDA decision making, and that pre-deadline approvals are associated with substantially 
different post-marketing regulatory experiences than are other approvals, especially 
approvals the closely follow the elapsing of the deadlines.   
 
Any analysis of this sort – no matter how sophisticated its methods – possesses all of the 
limitations of observational studies.  Clearly there is no randomized or blinded assignment of 
drugs to the “treatment” of approval “before” a deadline.  Furthermore, the measurement of 
postmarketing events and “issues” – withdrawals, warnings, and other postmarketing 
indicators – is far from an exact science.  Such events are rare, although we have employed 
statistical methods to account for this.  We end, then, with a note of caution about using 
methods such as these.  While we believe that the methods elaborated here improve 
substantially upon those used by other analysts, it is not clear that there is a single “best” 
empirical strategy for the analysis of deadlines and regulatory decision making, and even if 
there were, we do not claim to have found it. 
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Appendix A-1: Sample S commands and output for estimation of the dynamic Cox model 
 
> coxclock3 <- coxph(Surv(.t0, .t, .d) ~ stafcder + subyear + month1pdufa + month2pdufa + 
month3pdufa + month4pdufa + month5pdufa + month6pdufa + month7pdufa + month8pdufa + 
month9pdufa + month10pdufa + month11pdufa + month12pdufa + month13pdufa + month14pdufa + 
month15pdufa + month16pdufa + month17pdufa + month18pdufa + month19pdufa + month20pdufa + 
month21pdufa + month22pdufa + month23pdufa + month24pdufa + month7fdama + month8fdama + 
month9fdama + month10fdama + month11fdama + month12fdama + month13fdama + month14fdama + 
month15fdama + month16fdama + month17fdama + month18fdama + frailty(discode), data =  
approved.drugdata.st.20051108.subset.TVC, subset = priority == 0, na.action = na.exclude, 
eps = 0.0001, iter.max = 10, method = "efron")  
 
> summary(coxclock3) 
  n=34536 (935 observations deleted due to missing values) 
                 coef se(coef)      se2 Chisq   DF        p  
    stafcder -0.00108 0.00024  0.000235 20.22  1.0 6.9e-006 
     subyear -0.00573 0.00787  0.007710  0.53  1.0 4.7e-001 
 month1pdufa -1.02380 0.72041  0.719984  2.02  1.0 1.6e-001 
 month2pdufa -1.55817 1.01074  1.010447  2.38  1.0 1.2e-001 
 month3pdufa -0.20724 0.59993  0.599459  0.12  1.0 7.3e-001 
 month4pdufa  0.69101 0.48651  0.485945  2.02  1.0 1.6e-001 
 month5pdufa  0.62091 0.41303  0.412373  2.26  1.0 1.3e-001 
 month6pdufa  1.70436 0.31887  0.318054 28.57  1.0 9.0e-008 
 month7pdufa  0.31006 0.73189  0.731496  0.18  1.0 6.7e-001 
 month8pdufa  0.92331 0.61396  0.613506  2.26  1.0 1.3e-001 
 month9pdufa -0.48555 1.01701  1.016734  0.23  1.0 6.3e-001 
month10pdufa  0.67020 0.60857  0.608100  1.21  1.0 2.7e-001 
month11pdufa  2.50317 0.28998  0.289013 74.52  1.0 0.0e+000 
month12pdufa  1.17080 0.53658  0.535998  4.76  1.0 2.9e-002 
month13pdufa  0.83626 0.60842  0.607893  1.89  1.0 1.7e-001 
month14pdufa  1.85710 0.36168  0.360723 26.36  1.0 2.8e-007 
month15pdufa  1.64749 0.45109  0.450239 13.34  1.0 2.6e-004 
month16pdufa  1.46416 0.54276  0.542001  7.28  1.0 7.0e-003 
month17pdufa  0.79674 0.60418  0.603447  1.74  1.0 1.9e-001 
month18pdufa  1.77107 0.49637  0.495440 12.73  1.0 3.6e-004 
month19pdufa  1.32192 0.50264  0.501990  6.92  1.0 8.5e-003 
month20pdufa  0.89923 0.54175  0.541128  2.76  1.0 9.7e-002 
month21pdufa  1.87828 0.39961  0.398721 22.09  1.0 2.6e-006 
month22pdufa -0.01345 1.03147  1.031109  0.00  1.0 9.9e-001 
month23pdufa  1.67523 0.38815  0.387197 18.63  1.0 1.6e-005 
month24pdufa  1.29086 0.49516  0.494341  6.80  1.0 9.1e-003 
 month7fdama -0.50379 1.22514  1.224939  0.17  1.0 6.8e-001 
 month8fdama  0.19153 0.81710  0.816793  0.05  1.0 8.1e-001 
 month9fdama  2.15835 1.06951  1.069274  4.07  1.0 4.4e-002 
month10fdama  1.96435 0.63331  0.632863  9.62  1.0 1.9e-003 
month11fdama -0.87136 0.46675  0.466074  3.49  1.0 6.2e-002 
month12fdama  0.78953 0.62791  0.627265  1.58  1.0 2.1e-001 
month13fdama  0.79765 0.73126  0.730675  1.19  1.0 2.8e-001 
month14fdama -2.05782 1.04953  1.049091  3.84  1.0 5.0e-002 
month15fdama -0.06193 0.60692  0.606058  0.01  1.0 9.2e-001 
month16fdama  0.55665 0.64701  0.646049  0.74  1.0 3.9e-001 
month17fdama -0.20794 0.91401  0.913264  0.05  1.0 8.2e-001 
month18fdama -0.36465 0.73182  0.730816  0.25  1.0 6.2e-001 
frailty(discode)                        93.85 45.9 3.8e-005 
 
Iterations: 8 outer, 18 Newton-Raphson 
     Variance of random effect= 0.0676   I-likelihood = -9696.3  
Degrees of freedom for terms=  …  
Rsquare= 0.015   (max possible= 0.436 ) 
Likelihood ratio test= 518  on 83.7 df,   p=0 
Wald test            = 354  on 83.7 df,   p=0 
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Appendix A-2: Sample S commands and output for estimation of the linear mixed effects 
model 
 
> mixeff.discont.clockerror01 <- lme( discontperyear ~ subyear + 
approve0910month + approve1112month + approve1314month + approve1112monthpdufa 
+ approve1314monthpdufa + approve0910monthfdama + approve1112monthfdama, data = 
approved.drugdata.xt.newnmes.matchcovar.20051108, random = ~ 1 | discode, 
subset = ndaduplicate < 1 & priority < 1, na.action = na.exclude, control = 
list(msVerbose = TRUE) ) 
 
Iteration:  0 ,  1  function calls, F=  849.2591  
Parameters: 
[1] 1.272172 
Iteration:  1 ,  2  function calls, F=  848.877  
Parameters: 
[1] 1.445163 
Iteration:  2 ,  3  function calls, F=  848.8632  
Parameters: 
[1] 1.48648 
 
> summary(mixeff.discont.clockerror01) 
Linear mixed-effects model fit by REML 
 Data: approved.drugdata.xt.newnmes.matchcovar.20051108  
  Subset: ndaduplicate < 1 & priority < 1  
        AIC       BIC   logLik  
  -3885.537 -3828.708 1953.769 
 
Random effects: 
 Formula:  ~ 1 | discode 
        (Intercept)   Residual  
StdDev:  0.01167518 0.05174127 
 
Fixed effects: discontperyear ~ subyear + approve0910month + approve1112month + 
approve1314month + approve1112monthpdufa +  approve1314monthpdufa + 
approve0910monthfdama + approve1112monthfdama  
                           Value Std.Error   DF   t-value p-value  
          (Intercept)  0.2426683 0.1350362 1102  1.797062  0.0726 
              subyear -0.0001111 0.0000685 1102 -1.623405  0.1048 
     approve0910month -0.0013380 0.0076494 1102 -0.174912  0.8612 
     approve1112month  0.0067223 0.0073661 1102  0.912597  0.3617 
     approve1314month  0.0016860 0.0075225 1102  0.224131  0.8227 
approve1112monthpdufa  0.0533005 0.0127216 1102  4.189769  <.0001 
approve1314monthpdufa  0.0217312 0.0155111 1102  1.401012  0.1615 
approve0910monthfdama  0.0783764 0.0141356 1102  5.544625  <.0001 
approve1112monthfdama -0.0821309 0.0195235 1102 -4.206764  <.0001 
 
Standardized Within-Group Residuals: 
      Min         Q1        Med        Q3      Max  
 -2.31866 -0.4362177 -0.3367561 0.2192182 10.88838 
 
Number of Observations: 1304 
Number of Groups: 194 
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Appendix A-3: R commands for linear mixed-effects model estimation of PMRE data using 
combined just-before-deadline indicator, including MCMC posterior sampling. 
 
combowit.lmer.clockerror01 <- lmer(combowit ~ (1 | discode) + subyear + 
predead, family = binomial, data = dandat, subset = subyear > 1962, method = 
"Laplace", control = list(msVerbose = TRUE), na.action = na.exclude, model = 
TRUE) 
 
summary(combowit.lmer.clockerror01) 
 
combowit.lmer.clockerror01.sim <- mcsamp(combowit.lmer.clockerror01) 
 
print(combowit.lmer.clockerror01.sim) 
 
combowit.lmer.clockerror02 <- lmer(combowit ~ (1 | discode) + subyrctr + 
predead, family = binomial, data = dandat, subset = subyear > 1962, method = 
"Laplace", control = list(msVerbose = TRUE), na.action = na.exclude, model = 
TRUE) 
 
summary(combowit.lmer.clockerror02) 
 
combowit.lmer.clockerror02.sim <- mcsamp(combowit.lmer.clockerror02) 
 
print(combowit.lmer.clockerror02.sim) 
 
combobbw.lmer.clockerror01 <- lmer(combobbw ~ (1 | discode) + subyrctr + 
predead, family = binomial, data = dandat, subset = subyear > 1974, method = 
"Laplace", control = list(msVerbose = TRUE), na.action = na.exclude, model = 
TRUE) 
 
summary(combobbw.lmer.clockerror03) 
 
combobbw.lmer.clockerror03.sim <- mcsamp(combobbw.lmer.clockerror03) 
 
print(combobbw.lmer.clockerror03.sim) 
 
witorbbw.lmer.clockerror01 <- lmer(combobbw ~ (1 | discode) + subyrctr + 
predead, family = binomial, data = dandat, subset = subyear > 1974, method = 
"Laplace", control = list(msVerbose = TRUE), na.action = na.exclude, model = 
TRUE) 
 
summary(witorbbw.lmer.clockerror01) 
 
witorbbw.lmer.clockerror01.sim <- mcsamp(witorbbw.lmer.clockerror01) 
 
print(witorbbw.lmer.clockerror01.sim) 
 
 
discont01.lmer.clockerror01 <- lmer(discont01 ~ (1 | discode) + subyrctr + 
predead, family = binomial, data = dandat, subset = subyear > 1949, method = 
"Laplace", control = list(msVerbose = TRUE), na.action = na.exclude, model = 
TRUE) 
 
summary(discont01.lmer.clockerror01) 
 
discont01.lmer.clockerror01.sim <- mcsamp(discont01.lmer.clockerror01) 
 
print(discont01.lmer.clockerror01.sim) 
 



Figure 1 withdrawn from this version. 
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Figure 2 withdrawn from this version 
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Table 1: Summary Statistics for Post-Marketing Regulatory Event (PMRE) Variables 

 
STANDARD NMEs      
Variable Valid NMEs Mean Std. Dev. Minimum Maximum 
      
Manufacturing Revisions per Marketing Year 1241 0.1331 0.1731 0 1.43 
Patient Population Changes per Marketing Year 1241 0.0042 0.0219 0 0.24 
Dosage-Form Discontinuations per Marketing Year 1314 0.0272 0.0540 0 0.67 
Major Labeling Revision (Lasser et al (2002)) 789 0.0330 0.1786 0 1 
Major Labeling Revision (KUMC) 1137 0.1618 0.3685 0 1 
Canadian Safety Withdrawal (1962-present) 1137 0.0193 0.1378 0 1 
Global Safety Withdrawal (1981-present) 650 0.0277 0.1642 0 1 
      
PRIORITY NMEs      
Variable Valid NMEs Mean Std. Dev. Minimum Maximum 
      
Manufacturing Revisions per Marketing Year 151 0.2402 0.2554 0 1.33 
Patient Population Changes per Marketing Year 151 0.0115 0.0395 0 0.33 
Dosage-Form Discontinuations per Marketing Year 154 0.0257 0.0676 0 0.43 
Major Labeling Revision (Lasser et al (2002)) 150 0.0667 0.2503 0 1 
Major Labeling Revision (KUMC) 155 0.2968 0.4583 0 1 
Canadian Safety Withdrawal (1962-present) 155 0.0194 0.1382 0 1 
Global Safety Withdrawal (1981-present) 140 0.0429 0.2033 0 1 
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Table 2A: 

GLM Analysis of Postmarket Dosage-Form Discontinuation for Standard NMEs 
(Standard Errors in Parentheses) 

Variables Linear Mixed Effects Model Linear All Fixed Effects Model Linear Fixed Effects Model 
(post-1962) 

Year of Submission -0.0000 
(0.0001) 

-0.0000 
(0.0001) 

-0.0003 
(0.0002) 

Approval in First Six Months 
 

----- ----- -0.0005 
(0.0084) 

Approval in 9th or 10th Month, pre-PDUFA -0.0011 
(0.0075) 

0.0003 
(0.0080) 

----- 

Approval in 11th or 12th Month, pre-PDUFA 0.0065 
(0.0072) 

0.0067 
(0.0076) 

----- 

Approval in 13th or 14th month, pre-PDUFA 0.0021 
(0.0074) 

0.0015 
(0.0078) 

----- 

Approval in 11th or 12th Month, PDUFA 
[pre-deadline] 

0.0641 
(0.0132) 

0.0643 
(0.0143) 

0.0430 
(0.0119) 

Approval in 13th or 14th Month, PDUFA 
[post-deadline] 

0.0298 
(0.0160) 

0.0332 
(0.0169) 

----- 

Approval in 9th or 10th Month, FDAMA 
[pre-deadline] 

0.0852 
(0.0151) 

0.0769 
(0.0173) 

0.0633 
(0.0162) 

Approval in 11th or 12th Month, FDAMA 
[post-deadline] 

-0.1035 
(0.0199) 

-0.1033 
(0.0214) 

----- 

Number of Indicator Variables for Sponsors 49 49 0 
Number of Effects Terms for Primary 
Indication 

194 
[random] 

194 
[fixed] 

178 
[fixed] 

NMEs 1,304 1,304 938 
R-squared 0.1336 0.1230 0.0430 
Corr (ui, Zγ) Assumed = 0 -0.0205 0.0424 
Joint Significance of Primary Indication 
Terms 

----- F(193, 1054) = 1.41  
(p = 0.0005) 

F (177,756) = 1.36 
(p = 0.0033) 

Joint Significance of Firm Indicators Chi-sq = 102.29 
(p < 0.0001) 

F (48, 1054) = 1.88 
(p = 0.0003) 

----- 
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Table 2A [GLM Analysis of Postmarket Dosage-Form Discontinuation for Standard NMEs] Continued 

Parameter Estimate Comparisons F-Statistic F-Statistic F-Statistic 
Pre-Deadline versus Post-Deadline [PDUFA] 
 
11th or 12th month approval (PDUFA)  
versus 13th or 14th month approval (PDUFA) 

2.94 
(p = 0.0864) 

2.10 
(p = 0.1473) 

----- 

Pre-Deadline versus Post-Deadline, across regimes 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (FDAMA) 

34.95 
(p < 0.0001) 

29.79 
(p < 0.0001) 

----- 

Pre-Deadline [PDUFA] versus same months, pre-
PDUFA 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (pre-PDUFA) 

10.17 
(p = 0.0014) 

8.88 
(p = 0.0030) 

----- 

Pre-Deadline versus Post-Deadline [FDAMA] 
 
9th or 10th month approval (FDAMA)  
versus 11th or 12th month approval (FDAMA) 

21.94 
(p < 0.0001) 

42.36 
(p < 0.0001) 

----- 

Pre-Deadline [FDAMA] versus same months, pre-
FDAMA 
 
9th or 10th month approval (FDAMA)  
versus 9th or 10th month approval (pre-PDUFA) 

18.92 
(p < 0.0001) 

12.00 
(p = 0.0006) 

----- 

Pre-Deadline (PDUFA) versus Early Approval 
 
11th or 12th month approval (PDUFA)  
versus approval in first six months 

----- ----- 9.40 
(p = 0.0023) 

Pre-Deadline (FDAMA) versus Early Approval 
 
9th or 10th month approval (FDAMA)  
versus approval in first six months 

----- ----- 13.10 
(p = 0.0003) 

Note: Comparisons of deadline approvals with “early” approvals (less than six months) are restricted to post-1962 approvals because of the very rapid pace of 
approvals in the 1950s. 
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Table 2B: 

GLM Analysis of Postmarket Patient Population Changes for Standard NMEs 
(Standard Errors in Parentheses) 

Variables Linear Mixed Effects Model Linear All Fixed Effects Model Linear Fixed Effects Model 
(post-1962) 

Year of Submission 0.0001 
(0.0000) 

0.0001 
(0.0000) 

0.0004 
(0.0001) 

Approval in First Six Months 
 

----- ----- -0.0006 
(0.0040) 

Approval in 9th or 10th Month, pre-PDUFA 0.0013 
(0.0031) 

0.0011 
(0.0035) 

----- 

Approval in 11th or 12th Month, pre-PDUFA 0.0006 
(0.0032) 

0.0003 
(0.0035) 

----- 

Approval in 13th or 14th month, pre-PDUFA 0.0015 
(0.0034) 

0.0022 
(0.0037) 

----- 

Approval in 11th or 12th Month, PDUFA 
[pre-deadline] 

0.0033 
(0.0055) 

0.0060 
(0.0064) 

0.0055 
(0.0054) 

Approval in 13th or 14th Month, PDUFA 
[post-deadline] 

-0.0100 
(0.0068) 

-0.0134 
(0.0074) 

----- 

Approval in 9th or 10th Month, FDAMA 
[pre-deadline] 

-0.0075 
(0.0060) 

-0.0078 
(0.0074) 

-0.0139 
(0.0073) 

Approval in 11th or 12th Month, FDAMA 
[post-deadline] 

-0.0261 
(0.0083) 

-0.0283 
(0.0091) 

----- 

Number of Indicator Variables for Sponsors 48 48 0 
Number of Effects Terms for Primary 
Indication 

186 
[random] 

186 
[fixed] 

174 
[fixed] 

NMEs 1,232 1,232 902 
R-squared 0.1125 0.1005 0.0199 
Corr (ui, Zγ) Assumed = 0 -0.3050 -0.0861 
Joint Significance of Primary Indication 
Terms 

----- F (185,990) = 0.89 
(p = 0.8473) 

F (173,724) = 0.67 
(p = 0.9992) 

Joint Significance of Firm Indicators (chi-sq) Chi-sq = 275.64 
(p < 0.0001) 

F (48, 990) = 2.71 
(p < 0.0001) 

----- 
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Table 2B [GLM Analysis of Postmarket Patient Population Changes for Standard NMEs] Continued 

Parameter Estimate Comparisons F-Statistic F-Statistic F-Statistic 
Pre-Deadline versus Post-Deadline [PDUFA] 
 
11th or 12th month approval (PDUFA)  
versus 13th or 14th month approval (PDUFA) 

2.39 
(p = 0.1220) 

4.23 
(p = 0.0400) 

----- 

Pre-Deadline versus Post-Deadline, across regimes 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (FDAMA) 

6.26 
(p = 0.0123) 

6.58 
(p = 0.0105) 

----- 

Pre-Deadline [PDUFA] versus same months, pre-
PDUFA 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (pre-PDUFA) 

0.12 
(p = 0.7314) 

0.42 
(p = 0.5177) 

----- 

Pre-Deadline versus Post-Deadline [FDAMA] 
 
9th or 10th month approval (FDAMA)  
versus 11th or 12th month approval (FDAMA) 

3.37 
(p = 0.0664) 

2.97 
(p = 0.0853) 

----- 

Pre-Deadline [FDAMA] versus same months, pre-
FDAMA 
 
9th or 10th month approval (FDAMA)  
versus 9th or 10th month approval (pre-PDUFA) 

1.20 
(p = 0.2732) 

0.88 
(p = 0.3473) 

----- 

Pre-Deadline (PDUFA) versus Early Approval 
 
11th or 12th month approval (PDUFA)  
versus approval in first six months 

----- ----- 0.89 
(p = 0.3455) 

Pre-Deadline (FDAMA) versus Early Approval 
 
9th or 10th month approval (FDAMA)  
versus approval in first six months 

----- ----- 2.72 
(p = 0.0997) 

Note: Comparisons of deadline approvals with “early” approvals (less than six months) are restricted to post-1962 approvals because of the very rapid pace of 
approvals in the 1950s. 
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Table 2C: 

GLM Analysis of Postmarket Manufacturing Revisions for Standard NMEs 
(Standard Errors in Parentheses) 

Variables Mixed Effects Model All Fixed Effects Model Disease Fixed Effects (post-
1962) 

Year of Submission 0.0014 
(0.0002) 

0.0015 
(0.0002) 

0.0040 
(0.0008) 

Approval in First 6 months 
 

----- ----- -0.1045 
(0.0265) 

Approval in 9th or 10th Month, pre-PDUFA -0.0091 
(0.0220) 

0.0001 
(0.0236) 

----- 

Approval in 11th or 12th Month, pre-PDUFA -0.0142 
(0.0226) 

-0.0132 
(0.0240) 

----- 

Approval in 13th or 14th month, pre-PDUFA 0.0485 
(0.0239) 

0.0551 
(0.0250) 

----- 

Approval in 11th or 12th Month, PDUFA [pre-
deadline] 

0.1576 
(0.0392) 

0.2243 
(0.0434) 

0.1608 
(0.0364) 

Approval in 13th or 14th Month, PDUFA [post-
deadline] 

0.0393 
(0.0483) 

0.0546 
(0.0502) 

----- 

Approval in 9th or 10th Month, FDAMA [pre-
deadline] 

-0.1305 
(0.0430) 

-0.1426 
(0.0503) 

-0.1501 
(0.0489) 

Approval in 11th or 12th Month, FDAMA 
[post-deadline] 

0.0877 
(0.0584) 

-0.1066 
(0.0623) 

----- 

Number of Indicator Variables for Sponsors 47 47 ----- 
Number of Effects Terms for Primary 
Indication 

186 
[random] 

186 
[fixed] 

174 
[fixed] 

NMEs 1,232 1,232 902 
R-squared 0.2732 0.2409 0.0763 
Corr (ui, Zγ) Assumed = 0 -0.1951 -0.1370 
Joint Significance of Primary Indication Terms ----- F(185, 990) = 1.59  

(p < 0.0001) 
F (173,724) = 1.54 

(p = 0.0001) 
Joint Significance of Firm Indicators Chi-sq = 275.64 

(p < 0.0001) 
F(48, 990) = 5.36  

(p < 0.0001) 
----- 
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Table 2C [GLM Analysis of Postmarket Manufacturing Revisions for Standard NMEs] Continued 

Parameter Estimate Comparisons F-Statistic F-Statistic F-Statistic 
Pre-Deadline versus Post-Deadline [PDUFA] 
 
11th or 12th month approval (PDUFA)  
versus 13th or 14th month approval (PDUFA) 

3.82 
(p = 0.0507) 

7.04 
(p = 0.0081) 

----- 

Pre-Deadline versus Post-Deadline, across regimes 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (FDAMA) 

8.67 
(p = 0.0032) 

13.29 
(p = 0.0003) 

----- 

Pre-Deadline [PDUFA] versus same months, pre-
PDUFA 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (pre-PDUFA) 

9.73 
(p = 0.0018) 

15.81 
(p = 0.0001) 

----- 

Pre-Deadline versus Post-Deadline [FDAMA] 
 
9th or 10th month approval (FDAMA)  
versus 11th or 12th month approval (FDAMA) 

0.35 
(p = 0.5550) 

0.20 
(p = 0.6557) 

----- 

Pre-Deadline [FDAMA] versus same months, pre-
FDAMA 
 
9th or 10th month approval (FDAMA)  
versus 9th or 10th month approval (pre-PDUFA) 

4.51 
(p = 0.0338) 

4.95 
(p = 0.0263) 

----- 

Pre-Deadline (PDUFA) versus Early Approval 
 
11th or 12th month approval (PDUFA)  
versus approval in first six months 

----- ----- 36.56 
(p < 0.0001) 

Pre-Deadline (FDAMA) versus Early Approval 
 
9th or 10th month approval (FDAMA)  
versus approval in first six months 

----- ----- 0.72 
(p = 0.3956) 

Note: Comparisons of deadline approvals with “early” approvals (less than six months) are restricted to post-1962 approvals because of the very rapid pace of 
approvals in the 1950s. 
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Table 2D: 

GLM Analysis of Safety-Based Withdrawals for Standard NMEs (Canada, 1962-present)  
Variables Linear Mixed Effects 

Model 
Linear All Fixed Effects 
Model 

Linear Mixed Effects 
Model 

Extreme Value 
Regression 

Year of Submission -0.0019 
(0.0013) 

-0.0023 
(0.0015) 

-0.0021 
(0.0013) 

-0.0861 
(0.0911) 

Approval in First 6 months 
 

----- ----- -0.0263 
(0.0191) 

Estimate 
unobtainable 

Approval in 9th or 10th Month, pre-PDUFA 0.0495 
(0.0256) 

0.0694 
(0.0283) 

----- ----- 

Approval in 11th or 12th Month, pre-PDUFA -0.0217 
(0.0212) 

-0.0220 
(0.0230) 

----- ----- 

Approval in 13th or 14th month, pre-PDUFA -0.0195 
(0.0214) 

-0.0156 
(0.0236) 

----- ----- 

Approval in 11th or 12th Month, PDUFA [pre-
deadline] 

0.1738 
(0.0390) 

0.1735 
(0.0465) 

0.1236 
(0.0310) 

3.2544 
(1.2003) 

Approval in 13th or 14th Month, PDUFA [post-
deadline] 

0.0402 
(0.0535) 

0.0576 
(0.0569) 

----- ----- 

Approval in 9th or 10th Month, FDAMA [pre-
deadline] 

0.0637 
(0.1556) 

0.0645 
(0.1710) 

0.0829 
(0.1536) 

Estimate 
unobtainable 

Approval in 11th or 12th Month, FDAMA 
[post-deadline] 

-0.1617 
(0.0804) 

-0.1493 
(0.0873) 

----- ----- 

Number of Indicator Variables for Sponsors 46 46 46 46 [38 dropped] 
Number of Effects Terms for Primary 
Indication 

152 
[random] 

152 
[fixed] 

152 
[random] 

0 

NMEs 951 951 951 583 
R-squared  
[model Wald stat for Extreme Value model] 

0.0516 0.0322 0.0444 Wald = 97.72  
(p < 0.0001) 

Corr (ui, Zγ) Assumed = 0 -0.1833 Assumed = 0 ----- 
Joint Significance of Primary Indication Terms ----- F(151, 746) = 1.34  

(p = 0.0078) 
----- ----- 

Joint Significance of Firm Indicators Chi-sq = 33.17 
(p = 0.9216) 

F(46, 746) = 0.72  
(p = 0.9134) 

Chi-sq = 33.01 
(p = 0.9246) 

Chi-sq = 26.61 
(p = 0.0008) 
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Table 2D [GLM Analysis of Safety-Based Withdrawals for Standard NMEs (Canada, 1962-present)] Continued 

Parameter Estimate Comparisons F-Statistic F-Statistic Chi-Squared F-Statistic 
Pre-Deadline versus Post-Deadline [PDUFA] 
 
11th or 12th month approval (PDUFA)  
versus 13th or 14th month approval (PDUFA) 

4.73 
(p = 0.0297) 

2.95 
(p = 0.0863) 

----- ----- 

Pre-Deadline versus Post-Deadline, across regimes 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (FDAMA) 

11.44 
(p = 0.0007) 

8.29 
(p = 0.0041) 

----- ----- 

Pre-Deadline [PDUFA] versus same months, pre-
PDUFA 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (pre-PDUFA) 

13.48 
(p = 0.0002) 

10.32 
(p = 0.0014) 

----- ----- 

Pre-Deadline versus Post-Deadline [FDAMA] 
 
9th or 10th month approval (FDAMA)  
versus 11th or 12th month approval (FDAMA) 

1.60 
(p = 0.2057) 

1.20 
(p = 0.2744) 

----- ----- 

Pre-Deadline [FDAMA] versus same months, pre-
FDAMA 
 
9th or 10th month approval (FDAMA)  
versus 9th or 10th month approval (pre-PDUFA) 

0.01 
(p = 0.9300) 

0.00 
(p = 0.9777) 

----- ----- 

Pre-Deadline (PDUFA) versus Early Approval 
 
11th or 12th month approval (PDUFA)  
versus approval in first six months 

----- ----- 18.08 
(p < 0.0001) 

Infinite 
[p unobtainable] 

Pre-Deadline (FDAMA) versus Early Approval 
 
9th or 10th month approval (FDAMA)  
versus approval in first six months 

----- ----- 0.50 
(p = 0.4803) 

Infinite 
[p unobtainable] 

Note: Models also include total CDER staff in year of submission (varies over time), and order of entry for NME into therapeutic class (varies over time and across 
NMEs. 
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Table 2E: 

GLM Analysis of Global Safety-Based Withdrawals for Standard NMEs (1980-present)  
Variables Linear Mixed Effects 

Model 
Linear All Fixed Effects 
Model 

Linear Mixed Effects 
Model 

Extreme Value 
Regression 

Year of Submission 0.0004 
(0.0011) 

0.0012 
(0.0016) 

0.0008 
(0.0013) 

0.0306 
(0.0360) 

Approval in First 6 months 
 

----- ----- -0.0202 
(0.0255) 

----- 

Approval in 9th or 10th Month, pre-PDUFA -0.0659 
(0.0441) 

-0.0486 
(0.0574) 

----- -15.0984 
(0.6079) 

Approval in 11th or 12th Month, pre-PDUFA -0.0583 
(0.0443) 

-0.0597 
(0.0540) 

----- -15.2724 
(0.9391) 

Approval in 13th or 14th month, pre-PDUFA 0.0420 
(0.0410) 

0.0317 
(0.0498) 

----- 1.9233 
(1.2785) 

Approval in 11th or 12th Month, PDUFA [pre-
deadline] 

0.1177 
(0.0566) 

0.0683 
(0.0691) 

0.0264 
(0.0310) 

16.7486 
(1.2590) 

Approval in 13th or 14th Month, PDUFA [post-
deadline] 

-0.0020 
(0.0599) 

0.0229 
(0.0724) 

----- -0.7420 
(1.6393) 

Approval in 9th or 10th Month, FDAMA [pre-
deadline] 

0.1013 
(0.0601) 

0.0520 
(0.0775) 

0.0280 
(0.0411) 

16.7770 
(1.1333) 

Approval in 11th or 12th Month, FDAMA 
[post-deadline] 

-0.0972 
(0.0626) 

-0.0640 
(0.0724) 

----- Estimate 
unobtainable 

Number of Indicator Variables for Sponsors 47 47 47 46 [34 dropped] 
Number of Effects Terms for Primary 
Indication 

159 
[random] 

159 
[fixed] 

159 
[random] 

0 

NMEs 632 632 632 453 
R-squared  
[model Wald stat for Extreme Value model] 

0.1667 0.1318 0.1551 Wald = 1150.04  
(p < 0.0001) 

Corr (ui, Zγ) Assumed = 0 -0.3753 Assumed = 0 ----- 
Joint Significance of Primary Indication Terms ----- F(158, 418) = 0.80  

(p = 0.9481) 
----- ----- 

Joint Significance of Firm Indicators Chi-sq = 109.69 
(p < 0.0001) 

F(47, 418) = 2.69  
(p < 0.0001) 

Chi-sq = 103.13 
(p < 0.0001) 

Chi-sq = 31.97 
(p = 0.0014) 
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Table 2E [GLM Analysis of Global Safety-Based Withdrawals for Standard NMEs (1980-present)] Continued 

Parameter Estimate Comparisons Chi-Squared F-Statistic Chi-Squared Chi-Squared 
Pre-Deadline versus Post-Deadline [PDUFA] 
 
11th or 12th month approval (PDUFA)  
versus 13th or 14th month approval (PDUFA) 

2.27 
(p = 0.1319) 

0.23 
(p = 0.6339) 

----- 82.20 
(p < 0.0001) 

Pre-Deadline versus Post-Deadline, across regimes 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (FDAMA) 

4.92 
(p = 0.0266) 

1.29 
(p = 0.2569) 

----- Infinite 
[p unobtainable] 

Pre-Deadline [PDUFA] versus same months, pre-
PDUFA 
 
11th or 12th month approval (PDUFA)  
versus 11th or 12th month approval (pre-PDUFA) 

3.42 
(p = 0.0644) 

1.22 
(p = 0.2694) 

----- 246.33 
(p < 0.0001) 

Pre-Deadline versus Post-Deadline [FDAMA] 
 
9th or 10th month approval (FDAMA)  
versus 11th or 12th month approval (FDAMA) 

5.41 
(p = 0.0200) 

1.21 
(p = 0.2724) 

----- Infinite 
[p unobtainable] 

Pre-Deadline [FDAMA] versus same months, pre-
FDAMA 
 
9th or 10th month approval (FDAMA)  
versus 9th or 10th month approval (pre-PDUFA) 

2.96 
(p = 0.0855) 

0.64 
(p = 0.4245) 

----- 427.37 
(p < 0.0001) 

Pre-Deadline (PDUFA) versus Early Approval 
 
11th or 12th month approval (PDUFA)  
versus approval in first six months 

----- ----- 1.56 
(p = 0.2115) 

----- 

Pre-Deadline (FDAMA) versus Early Approval 
 
9th or 10th month approval (FDAMA)  
versus approval in first six months 

----- ----- 1.14 
(p = 0.2849) 

----- 

Note: Models also include total CDER staff in year of submission (varies over time), and order of entry for NME into therapeutic class (varies over time and across 
NMEs.   
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Table 3A: 

GLM Analysis of Canadian Safety-Based Withdrawals for Priority NMEs (1980-present)  
(Robust standard errors in parentheses) 

Variables Linear Model Extreme Value 
Regression 

Linear Fixed Effects 
Model 

Extreme Value 
Regression (Fixed Eff) 

Year of Submission -0.0002 
(0.0003) 

-0.0115 
(0.0274) 

-0.0007 
(0.0010) 

0.1484 
(0.1462) 

Approval in First 4 months 
 

-0.0148 
(0.0116) 

** -0.0024 
(0.0071) 

** 

Approval in 5th or 6th Month, pre-PDUFA -0.0161 
(0.0107) 

-14.7742 
(0.7529) 

-0.0215 
(0.0437) 

-17.5971 
(1.4550) 

Approval in 5th or 6th Month, PDUFA [pre-
deadline] 

0.0624 
(0.0445) 

16.2405 
(0.9649) 

0.0450 
(0.0437) 

18.4802 
(1.2480) 

Number of Indicator Variables for Sponsors 0 0 28 28 [25 dropped] 
NMEs 179 171 179 78 
F-statistic 
[or Wald stat for Extreme Value model] 

1.01 
(p = 0.4028) 

621.75 
(p < 0.0001) 

1.69 
(p = 0.0119) 

** 

Joint Significance of Firm Indicators ----- ----- 0.10 
(p = 1.0000) 

1002.16 
(p < 0.0001) 

Parameter Estimate Comparisons F-Statistic Chi-Squared F-Statistic Chi-Squared 
Pre-Deadline [PDUFA] versus same months, pre-
PDUFA 
 
5th or 6th month priority approval (9/1992 - present)  
versus 5th or 6th month priority approval (pre-9/1992) 

2.87 
(p = 0.0920) 

579.95 
(p < 0.0001) 

0.70 
(p = 0.4040) 

209.09 
(p < 0.0001) 

Pre-Deadline (PDUFA) versus Early Approval 
 
5th or 6th month priority approval (9/1992 - present)  
versus approval in first four months 

2.98 
(p = 0.0862) 

Infinite 
[p unobtainable] 

1.14 
(p = 0.2878) 

Infinite 
[p unobtainable] 

Notes: ** = Estimate unobtainable (for likelihood-based models where zero events occur in the relevant category). Robust standard error in extreme value regression is sandwich 
estimate. Where linear model F-statistic cannot be retrieved from robust covariance matrix estimation, an estimate is obtained from non-robust estimation.  No withdrawals occur for 7th 
and 8th month approvals under PDUFA, hence parameter estimate comparisons are usually explosive (infinitely valued) and are excluded from this table. 
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Table 3B: 
GLM Analysis of Global Safety-Based Withdrawals for Priority NMEs (1980-present)  

(Robust standard errors in parentheses) 
Variables Linear Model Extreme Value 

Regression 
Linear Fixed Effects 
Model 

Extreme Value 
Regression (Fixed Eff) 

Year of Submission -0.0013 
(0.0034) 

-0.0305 
(0.0763) 

-0.0006 
(0.0050) 

-0.0430 
(0.0825) 

Approval in First 4 months 
 

-0.0390 
(0.0200) 

** -0.0421 
(0.0321) 

** 

Approval in 5th or 6th Month, pre-PDUFA -0.0451 
(0.0209) 

-15.1716 
(0.6250) 

-0.0869 
(0.0732) 

0.5002 
(1.2965) 

Approval in 5th or 6th Month, PDUFA [pre-
deadline] 

0.0697 
(0.0487) 

15.7011 
(1.0174) 

0.1021 
(0.0734) 

-0.1151 
(1.1736) 

Number of Indicator Variables for Sponsors 0 0 27 27 [22 dropped] 
NMEs 165 157 165 89 
F-statistic 
[or Wald stat for Extreme Value model] 

1.78 
(p = 0.1358) 

671.77 
(p < 0.0001) 

0.33 
(p = 0.9999) 

Wald = 5.67  
(p = 0.6838) 

Joint Significance of Firm Indicators ----- ----- 0.27 
(p = 0.9999) 

Chi-sq = 5.59 
(p = 0.3480) 

Parameter Estimate Comparisons F-Statistic Chi-Squared F-Statistic Chi-Squared 
Pre-Deadline [PDUFA] versus same months, pre-
PDUFA 
 
5th or 6th month priority approval (9/1992 - present)  
versus 5th or 6th month priority approval (pre-9/1992) 

4.05 
(p = 0.0459) 

504.12 
(p < 0.0001) 

2.08 
(p = 0.1519) 

0.08 
(p = 0.7770) 

Pre-Deadline (PDUFA) versus Early Approval 
 
5th or 6th month priority approval (9/1992 - present)  
versus approval in first four months 

4.85 
(p = 0.0291) 

Infinite 
[p unobtainable] 

2.95 
(p = 0.0884) 

Infinite 
[p unobtainable] 

Notes: ** = Estimate unobtainable (for likelihood-based models where zero events occur in the relevant category). Robust standard error in extreme value regression is sandwich 
estimate. Where linear model F-statistic cannot be retrieved from robust covariance matrix estimation, an estimate is obtained from non-robust estimation.  No global withdrawals occur 
for 7th and 8th month approvals before or after September 1992, hence parameters and relevant parameter estimate comparisons are excluded from this table.   
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Table 3C: 

GLM Analysis of Major Safety-Based Label Changes, Lasser (JAMA 2002) List, NMEs 1975-2000 
(Robust standard errors in parentheses) 

Variables Linear Model Extreme Value 
Regression 

Linear Fixed Effects 
Model 

Extreme Value Regression 
(Fixed Effects) 

Year of Submission -0.0109 
(0.0040) 

-0.1400 
(0.0383) 

-0.0068 
(0.0042) 

-0.1216 
(0.0686) 

Approval in First 4 months 
 

0.0959 
(0.1116) 

1.5424 
(1.1019) 

0.0976 
(0.1365) 

1.4529 
(1.1543) 

Approval in 5th or 6th Month, pre-PDUFA -0.0969 
(0.0349) 

-15.5952 
(0.5762) 

-0.0745 
(0.0524) 

-14.3798 
(1.9576) 

Approval in 5th or 6th Month, PDUFA [pre-
deadline] 

0.1539 
(0.0582) 

16.6822 
(0.9825) 

0.0801 
(0.0708) 

14.6095 
(1.7068) 

Number of Indicator Variables for Sponsors 0 0 28 28 [21 dropped] 
NMEs 175 175 175 91 
F-statistic 
[or Wald stat for Extreme Value model] 

2.48 
(p = 0.0461) 

807.35 
(p < 0.0001) 

1.79 
(p = 0.0066) 

478.74 
(p < 0.0001) 

Joint Significance of Firm Indicators ----- ----- 1.65 
(p = 0.0207) 

12.20 
(p = 0.0940) 

Parameter Estimate Comparisons F-Statistic Chi-Squared F-Statistic Chi-Squared 
Pre-Deadline [PDUFA] versus same months, pre-
PDUFA 
 
5th or 6th month priority approval (9/1992 - present)  
versus 5th or 6th month priority approval (pre-9/1992) 

9.00 
(p = 0.0031) 

605.37 
(p < 0.0001) 

1.84 
(p = 0.1778) 

174.07 
(p < 0.0001) 

Pre-Deadline (PDUFA) versus Early Approval 
 
5th or 6th month priority approval (9/1992 - present)  
versus approval in first four months 

0.25 
(p = 0.6202) 

151.79 
(p < 0.0001) 

0.02 
(p = 0.8786) 

53.60 
(p < 0.0001) 

Notes: Robust standard error in extreme value regression is sandwich estimate.  Where linear model F-statistic cannot be retrieved from robust covariance matrix estimation, an estimate 
is obtained from non-robust estimation. No withdrawals occur for 7th and 8th month approvals under PDUFA, hence parameter estimate comparisons are usually explosive (infinitely 
valued) and are excluded from this table. 
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Table 3D: 
GLM Analysis of Major Safety-Based Label Changes, KUMC List 

 (Robust standard errors in parentheses) 
Variables Linear Model Extreme Value 

Regression 
Linear Fixed Effects 
Model 

Extreme Value 
Regression (Fixed Eff) 

Year of Submission -0.019 
(0.0037) 

-0.0064 
(0.0102) 

-0.0138 
(0.0075) 

-0.0655 
(0.0296) 

Approval in First 4 months 
 

0.2328 
(0.1832) 

0.7392 
(0.5398) 

0.2087 
(0.1646) 

1.1162 
(0.5344) 

Approval in 5th or 6th Month, pre-PDUFA 0.1617 
(0.1708) 

0.2236 
(0.3536) 

0.0255 
(0.2209) 

0.0731 
(0.7615) 

Approval in 5th or 6th Month, PDUFA [pre-
deadline] 

-0.0910 
(0.1890) 

15.7011 
(1.0174) 

0.1275 
(0.2327) 

0.8291 
(0.8511) 

Number of Indicator Variables for Sponsors 0 0 27 27 [13 dropped] 
NMEs 180 180 175 137 
F-statistic 
[or Wald stat for Extreme Value model] 

0.70 
(p = 0.5916) 

2.43 
(p = 0.6577) 

1.68 
(p = 0.0134) 

30.90 
(p = 0.0295) 

Joint Significance of Firm Indicators ----- ----- 182.58 
(p < 0.0001) 

25.62 
(p = 0.0290) 

Parameter Estimate Comparisons F-Statistic Chi-Squared F-Statistic Chi-Squared 
Pre-Deadline [PDUFA] versus same months, pre-
PDUFA 
 
5th or 6th month priority approval (9/1992 - present)  
versus 5th or 6th month priority approval (pre-9/1992) 

0.53 
(p = 0.4748) 

0.71 
(p = 0.4006) 

0.05 
(p = 0.8179) 

0.24 
(p = 0.6242) 

Pre-Deadline (PDUFA) versus Early Approval 
 
5th or 6th month priority approval (9/1992 - present)  
versus approval in first four months 

1.54 
(p = 0.2163) 

1.95 
(p = 0.1623) 

0.08 
(p = 0.7789) 

0.08 
(p = 0.7755) 

Note: Robust standard error in extreme value regression is sandwich estimate.  Where linear model F-statistic cannot be retrieved from robust covariance matrix estimation, an estimate is 
obtained from non-robust estimation.   
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Table 4A-1: Combined NME Sample, Canadian Safety Withdrawals (1962-present) 
Firth-Corrected and Monte Carlo Efficient Regressions, Non-Stratified Sample 

[Adapted from LogXact7 Tabular Output (Cytel 2006)] 
regression (type=logit, model(canadian = predead subyear), estimate(predead subyear), method=monte, mle=firth, asiter=50, covmat); 
  
Data file  reduced-allNMEs4-20070226.cyd 

Analysis type  Estimate :: Monte Carlo 
Number of NMEs in analysis: 1549              
Summary Statistics                 

Statistics Value DF P-Value           
Deviance 64.9378 52 0.107366         
Likelihood Ratio 1903.85 3 0.00         

Parameter Estimates                 

    Point Estimate   Confidence Interval and P-Value for Beta 

          99%CI P-Value 
Model Term Type Beta SE(Beta) Type Lower Upper 2*1-sided SE 

Constant PMLE 110.8043948 42.59069 Asymptotic 27.328184 194.2806 0.009278   

Year of NME Submission PMLE -0.058094928 0.021543 Asymptotic -0.100319 -0.01587 0.007004   

  CMLE -0.058848902 0.022147 Monte Carlo -0.103673 -0.01625 0.0068 0.001164

        (Seed = 27627, Samples = 10000) 

PMLE 2.422677118 0.673313 Asymptotic 1.103008 3.742346 0.000321   
Pre-Deadline Approval  
 (Standard & Priority) 

CMLE 2.420301873 0.696211 Monte Carlo 0.8161904 4.041967 0.0016 0.000565

        (Seed = 27620, Samples = 10000) 
PMLE: Penalized MLE for bias correction (Firth's method) 

Covariance Matrix                 

  Constant       Pre-Deadline Approval Year of NME Submission         

Constant       1813.97 19.49908057 -0.91754           
Pre-Deadline Approval  
 

19.4991 0.453350338 -0.00989           

Year of NME Submission -0.91754 -0.009887876 0.000464           
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Table 4A-2: Combined NME Sample, Canadian Safety Withdrawals (1962-present) 

Firth-Corrected and Monte Carlo Efficient Regressions, Stratified Sample 
[Adapted from LogXact7 Tabular Output (Cytel 2006)] 

                  
regression (type=logit, model(canadian = predead subyear), stratum=discode, estimate(predead subyear), method=monte, mle=firth, asiter=50, covmat); 
Data file   reduced-allNMEs4-20070226.cyd             
Stratum variable   “discode” (Primary Indication of 

NME) 
            

Informative strata   14             
Analysis type   Estimate :: Monte Carlo             
Number of NMEs in analysis: 370                
Number of groups   196             
                  
Summary Statistics                 

Statistics Value DF P-Value           
Likelihood Ratio 10.8488 2 0.0044077         

Parameter Estimates                 
    Point Estimate   Confidence Interval and P-Value for Beta  
          99%CI P-Value 

Model Term Type Beta SE(Beta) Type Lower Upper 2*1-sided SE 

Year of NME Submission PMLE -0.034397713 0.0232279 Asymptotic -0.079924 0.011128 0.138639   
  CMLE -0.034834886 0.0235903 Monte Carlo -0.081485 0.010699 0.1388 0.005083
        (Seed = 28005, Samples = 10000) 

PMLE 3.228001109 1.0170508 Asymptotic 1.2346182 5.221384 0.001504   Pre-Deadline Approval 
(Standard & Priority) 
  CMLE 3.159580938 1.0048372 Monte Carlo 0.8892451 5.889337 0.0044 0.000937

        (Seed = 27986, Samples = 10000) 
PMLE: Penalized MLE for bias correction (Firth's method).             
Covariance Matrix                 

  Pre-Deadline 
Approval 

subyear                  

Pre-Deadline Approval 
 

1.03439 -0.00961371             

subyear      -0.00961 0.000539536             
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Table 4B: Combined NME Samples, Global Safety Withdrawals (1981-present) 

Firth-Corrected and Monte-Carlo Efficient Logistic Regression 
[Adapted from LogXact7 Tabular Output (Cytel 2006)] 

regression (type=logit, model(withdraw_p = subyear predead), estimate(subyear predead), method=monte, mle=firth, asiter=50, covmat); 

Data file   reduced-allNMEs5-20070226.csv             
Analysis type   Estimate :: Monte Carlo             
Number of NMEs in analysis: 997             

                  
Summary Statistics                 

Statistics Value DF P-Value           
Deviance 48.5099 33 0.039922          
Likelihood Ratio 1130.51 3 3.7E-09          

Parameter Estimates 

   Point Estimate   Confidence Interval and P-Value for Beta  

          99%CI P-Value   

Model Term Type Beta SE(Beta) Type Lower Upper 2*1-sided SE 

Constant PMLE 44.74434473 66.42083 Asymptotic -85.43809 174.9268 0.500534   
Year of NME Submission PMLE -0.024323613 0.033399 Asymptotic -0.089785 0.041137 0.466447   
  CMLE -0.025870433 0.034374 Monte Carlo -0.096268 0.038608 0.4642 0.008443
        (Seed = 1844, Samples = 10000)  

PMLE 1.175016836 0.563453 Asymptotic 0.0706701 2.279364 0.037034   
CMLE 1.159521119 0.56956 Monte Carlo -0.159571 2.446721 0.095 0.004254

Pre-Deadline Approval 
(Standard & Priority) 
  
        (Seed = 1850, Samples = 10000)  

PMLE: Penalized MLE for bias correction (Firth's method). 

Covariance Matrix                 

  Constant  Year of NME Submission      Pre-Deadline Approval           

Constant       4411.73 -2.218383104 21.72235           
Year of NME Submission    -2.21838 0.001115498 -0.01095           
Pre-Deadline Approval 21.7224 -0.010945458 0.317479           
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Table 4C: Combined NME Sample (Standard & Priority), Lasser Relabeling Measure 
(1974-2000) 

Firth-Corrected and Monte Carlo Efficient Maximum Likelihood Estimates 
[Adapted from LogXact7 Tabular Output (Cytel 2006)] 

regression (type=logit, model(lasser = predead subyear), estimate(predead subyear), method=monte, mle=firth, asiter=50, covmat); 
Data file   reduced-allNMEs5-20070226.csv 
Analysis type   
Number of NMEs in analysis: 1176   

Summary Statistics   

Estimate :: Monte Carlo 
  

Statistics Value DF P-Value 

  
  
  
  

Deviance 48.0919 31 0.0258
Likelihood Ratio 1263.3644 3 0.0000

 

         

Parameter Estimates        

   Point Estimate   Confidence Interval and P-Value for Beta 

          99%CI P-Value   

Model Term Type Beta SE(Beta) Type Lower Upper 2*1-sided SE 

Constant PMLE 60.9635 46.2301 Asymptotic -20.5246 151.5728 0.1873

Year of NME Submission PMLE -0.0323 0.0233 Asymptotic -0.0780 0.0133 0.1649 0.0054 

  CMLE -0.0332 0.0236  Monte Carlo  -0.0807 0.0133 0.1558  

Pre-Deadline Approval PMLE 0.6315 0.6373 Asymptotic 0.0405034 1.016001 0.3217  

  CMLE 0.5293  0.6702  Monte Carlo  -1.2636 1.9349 0.6380 0.0093

PMLE: Penalized MLE for bias correction (Firth's method).  
                  

Covariance Matrix                 

  Constant       Pre-
Deadline 
Approval   

Year of NME 
Submission 

          

Constant 2137.2220 12.7672 -1.0766           
Pre-Deadline Approval     12.7672 0.4061 -0.0064           
Year of NME Submission -1.0766 -0.0064 0.0005           
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Table 4D: Combined NME Sample (Standard & Priority), KUMC Relabeling Measure 

Firth-Corrected Maximum Likelihood Estimates 
[Adapted from LogXact7 Tabular Output (Cytel 2006)] 

                
regression (type=logit, model(kumc = predead subyear), estimate(predead subyear), method=monte, mle=firth, asiter=50, covmat); 
Data file   reduced-allNMEs5-20070226.csv 

  
    

    
  

Analysis type   Estimate :: Monte Carlo 
  

       

Number of NMEs in analysis: 2107             
Summary Statistics              

Statistics Value DF P-Value        
Deviance 88.8965 67 0.038045846      
Likelihood Ratio 1116.6 3 3.05895E-09      
               

Parameter Estimates              

   Point Estimate   Confidence Interval and P-Value for Beta 

          99%CI P-Value 

Model Term Type Beta SE(Beta) Type Lower Upper 2*1-sided 

Constant PMLE -9.094061997 5.832015706 Asymptotic -20.5246 2.336479 0.118917
Year of NME Submission PMLE 0.003729549 0.002954443 Asymptotic -0.002061 0.00952 0.206822 
  CMLE Infeasible      Infeasible 
Pre-Deadline Approval PMLE 0.528252138 0.248855981 Asymptotic 0.0405034 1.016001 0.033777
  CMLE Infeasible       Infeasible 
PMLE: Penalized MLE for bias correction (Firth's method). 

Covariance Matrix                 

  Constant     Pre-Deadline Approval      Year of NME 
Submission     

          

Constant 34.0124 0.42396564 -0.01722936           
Pre-Deadline Approval     0.42397 0.061929299 -0.00021677           
Year of NME Submission -0.01723 -0.000216773 8.72873E-06           

 



 51

[Table 4E withdrawn from this version.] 
 
 
 



 
 
Table 5 withdrawn from this version. 
 
 
 
 


